AS'X PRESTO

PRESTO_APPO1 - presto.dll

description

S0
- /‘
< o >
?:’5 \AO\F\V'*O
< *b oR ot
\\'\ o
S -Tas?
-TaR
Qn 5
™S Sl C’%
>
>

\(Application note

ASIX s.r.o.

Na Popelce 38/17
150 00 Prague
Czech Repubilic

www.asix.net
support@asix.net

sales@asix.net

ASIX s.r.o0. reserves the right to make changes to this document, the
latest version of which can be found on the Internet.

ASIX s.r.0. renounces responsibility for any damage caused by the use
of ASIX s.r.o0. products.

© Copyright by ASIX s.r.o.

http://www.asix.net
mailto:support@asix.net
mailto:sales@asix.net

Table of Contents

1 presto.dll
1.1 Introduction

1.2 Programmer pins marking
1.3 How to work with the programmer

1.4 List of the functions

1.5 Functions description

151
1.5.2
1.5.3
154
1.55
1.5.6
1.5.7
1.5.8
1.5.9
1.5.10
1.5.11
1.5.12
1.5.13
1.5.14
1.5.15
1.5.16
1.5.17
1.5.18
1.5.19
1.5.20

QOpenPresto
QClosePresto
QSetPins
QGetPins

QDelay
QPoweronVvdd
QPoweroffvdd
QSetActiveLED
QShiftByte
QShiftByte_Outlin
QCheckSupplyVoltage
QPoweronVppl3V
QPoweroffVppl3V
QSetDPullup
QCheckGoButton
QSetPrestoSpeed
AGet
AGetBlocking
AGetProglList
AClearFatalError

1.6 Answers

© © VW VW O 0O N N N o oo uu uu U b B b b pH

e e T
= = O O O

=
=

1.7 Constants
1.7.1 QSetPins constants
1.7.2 QShiftByte/QShiftByte_Outln constants
1.7.3 QSetPrestoSpeed constants

1.8 Fatal errors
1.9 12C warning

2 Appendix A - Return values of the
functions

3 Document history

11
11
12
12

12
12

13

14

1

presto.dll

1.1

1.2

Introduction

Functions implemented in the presto.dll enable setting or
reading of logical values at single pins of the PRESTO
programmer. Various communication protocols can be
implemented this way. QSetPins() function enables output
pins control. QGetPins() function enables input pins
reading. QSendByte() function enables a fast SPI Byte on
the data and clock pins to be sent. If also reading is
required, then the QSendByte Outin() can be used. Then
there are also functions for the programmer features
settings, for supply and programming voltages control
and functions for reading of the returned values.

The library can be used with all PRESTO programmers, it
does not depend on the version of the programmer.

Programmer pins
marking

In this document the programmer pins names are
simplified, it is better lucid. The simplified marking is
described in the table below.

Pinname |Marking |Function [Note

P1- VPP P I/0, 13V |logical values or programming
voltage

P2 key

P3-vDD |VvDD supply output 5 V or input for external
supply voltage

1.3

1.4

P4-GND [GND supply

P5 - DATA/ |D l/O fast data output via

MOSI QShiftByte() function

P6 - CLOCK |C O fast clock output via
QShiftByte() function

P7-MISO |l I

P8 - LVP L I/O

Table 1: Programming connector

Sense: | - input pin, O - output pin, I/O - input and output
pin, 13 V - programming voltage

How to work with the
programmer

Instructions are executed in a queue what corresponds
with the USB way of work. Waiting for every answer, e.qg.
from QGetPins(), would slow down the work dramatically.

At some of the instructions it is advisable to wait for their
answer before continuing, it is for example
QOpenPresto(). The cycle
instruction » PRESTO - answer takes from several
milliseconds to tens of milliseconds.

The order of reading answers corresponds with the order
of the instructions (Q...() functions) given. Returned data
can be read either not blocking way via AGet() or blocking
way via AGetBlocking() function.

List of the functions

void _ stdcall QOpenPresto(int sn);

void _ stdcall QClosePresto (void)

void _ stdcall QSetPins(int pins);

void __ stdcall QGetPins (void);,

void _ stdcall QPoweronVdd(int delayus),
void _ stdcall QPoweroffvdd (void)

void _ stdcall QDelay(int delayus);

Page 4

1.5

void __ stdcall QSetActiveLED (bool led);,

bool __ stdcall AGet(int *answer);

int _ stdcall AGetBlocking(void);

void _ stdcall AGetProgList(int *sn_list, int co
unt, int *count_returned),

void __ stdcall AClearFatalError (void);
void __ stdcall QShiftByte (int databyte, int mode
)/

void __ stdcall QShiftByte Outln(int databyte, in
t mode, int InputPin);,

void __ stdcall QCheckSupplyVoltage (void)
void __ stdcall QPoweronVppl3V(void)
void __ stdcall QPoweroffVppl3V (void),
void __ stdcall QSetDPullup (bool dpullup on);
void __ stdcall QCheckGoButton (void)
void __ stdcall QSetPrestoSpeed(int speed)/

Functions description
1.5.1 QOpenPresto

The function tries to open a PRESTO. If the sn variable is -
1 the function opens one PRESTO regardless its serial
number. In other cases the sn means the PRESTO serial
number. If the PRESTO serial number is A6016789, the sn
should be 0x6789.

void _ stdcall QOpenPresto(int sn);

Parameter:

sn - The serial number of the programmer.

Return values:

OPEN_OK - successfully opened

OPEN_NOTFOUND - programmer not found
OPEN_CANNOTOPEN - cannot open the programmer
OPEN_ALREADYOPEN - programmer is already open

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

QOpenPresto (0x6789),; // open PRESTO SN 6789

1.5.2 QClosePresto

It closes the PRESTO and switches output voltages off.
void _ stdcall QClosePresto(void);

Return values:

CLOSE_OK

CLOSE_CANNOTCLOSE - The programmer has not been
opened.

Return values are returned via AGet() or
AGetBlocking() functions.

1.5.3 QSetPins

The function sets the output pins in accordance with the
constants. Attention: if there are more pin changes in
one request, first the C and D pins are set together and
then the L and the P. So it is not possible to make edges
on for example the L and C pins simultaneously, but it is
possible on the D and the C. This can be utilized for serial
communications.

void _ stdcall QSetPins(int pins);
Parameter:

pins - The variable defines required values on the
programmer pins.

Return values:
(0]¢
NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

Page 5

To set the D pin to log.1 and the C pin to log.0 and if the
other pins state is to be unchanged, call function

QSetPins ((PINS_HI<<PINS D BIT) |
(PINS_LO<<PINS C BIT));

1.5.4 QGetPins

The function sends back the values that the programmer
sees on the D, L, | and P pins, the C pin cannot be read.
See the AGet() answers constants.

void __stdcall QGetPins(void);

Return values:

GETPINS_CODE + values of pins

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

To read the | pin state, call the QGetPins() function and
then read returned data using AGet() function. The AGet()
function for example returns 0x40B value. In this value all
the input pins values are returned, so the | pin state must
be filtered with GETPINS_PINI constant, in our example
the value which has been read on the | pin is log. 1.

if (AGet (data))

{ if ((data & GETPINS PINI)==GETPINS PINI)
{ //on the I pin there is log. 1}
else {//on the I pin there is log. 0}

}

1.5.5 QDelay

The function waits for specified time. The timer
granularity is 170.66 us (12 MHz/2048), the specified
value is rounded to the nearest higher multiple of the
170.66 ps.

void _ stdcall QDelay(int delayus);

Parameter:

delayus - Waiting time in ps.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example 1:
To do a delay of 7 ms in the signals, call function

QDelay (7000) ;
Example 2:

On OQDelay(5), the value is rounded up and the
programmer does a delay of 170.66 ps.

1.5.6 QPoweronVdd

The function switches on 5V from USB on the VDD pin,
then it waits for specified time and checks whether the
current is less than 100 mA. If the current is higher, the
programmer switches the voltage off. If there is a short
circuit on the VDD pin, the supply voltage will not be
present for much longer time than the specified time is.
The function returns a value in accordance with the result
of the operation. Although the result is returned in about
20 ms, the voltage is already switched off, this is solved in
the HW. It is recommended to choose the time carefully,
because long specified time is dangerous for the
programmer circuits if there is an error in connections. If
the internal supply voltage from the programmer is
switched off, an external supply voltage 2.5 to 5 V may be
connected to the programmer. The data pins logical
levels come up to the VDD supply voltage.

void _ stdcall QPoweronVdd(int delayus);

Parameter:

Page 6

delayus - Time in us after what the overcurrent will be
checked.

Return values:

POWERON_OK - The supply voltage has been switched on
successfully.

POWERON_OCURR - Overcurrent had been detected,
supply voltage was switched off.

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

To switch on the internal supply voltage on the VDD pin
and to check the overcurrent after 10 ms, call function

QPoweronVdd (10000) ;

1.5.7 QPoweroffVdd

The function switches the VDD supply voltage off.

void __ stdcall QpoweroffvVdd(void);

Return values:

oK

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

1.5.8 QSetActiveLED

The function switches on / off the ACTIVE LED on the
PRESTO.

void _ stdcall QSetActiveLED(bool led);
Parameter:

led - If the variable is True, the LED will switch on, if it is

False, the LED will switch off.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

To switch on the programmer ACTIVE LED, «call
QSetActiveLED(true) function, to switch it off, call
QSetActivelLED(false).

1.5.9 QShiftByte

The function sends a Byte on the D pin and generates
clock signal on the C pin. The Byte value is specified by
the databyte variable. The mode variable specifies a
mode in accordance with the SPI definition. Only modes 1
and 3 are supported, the other modes can be done
manually in combination with QSetPins() function usage,
but this will be much slower. In case the user selects a
mode that does not correspond with the current logic
level on the C pin, the C logic level is first set to the
required state. For example if there is 10g.0 on the C pin
and mode=3, the C will first change to log. 1 and then
the databyte will be sent.

The LSB is sent first, the clock signal is generated in
accordance with the value set using QSetPrestoSpeed().
The QShiftByte() function generates signals faster than if
the QSetPins() is used.

Page 7

[o [o1 [oo [o3[palons]oelonr]

D
MODE 1
S [I A
b | ool o1 [o2 o3| balos| el o]
MODE 3

c

BEREREREREREREREE
Fig. 2: SPI modes description

void _ stdcall QShiftByte(int databyte, int mode);

Parameters:

databyte - A variable for data to be sent.

mode - A variable defining SPI mode, its value may be 1
or 3 in accordance with the mode.

Return values:
(0] ¢
NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:
To send a 0x3A Byte in the SPI mode 1, call function

QShiftByte (0x3A, SHIFT MODEI1);

1.5.10 QShiftByte Outin

The function generates the C and D signals in accordance
with specified parameters as QShiftByte() function do, but
in addition it also reads data from the chosen pin at the
same time. The input pin can be chosen with InputPin
variable value. See constants defining possible values of
the InputPin variable. If the D pin is chosen as input, it is

first set to the high impedance state and the programmer
only reads.

void _ stdcall QShiftByte Outlin(int databyte, int mode, int
InputPin);

Parameters:
databyte - The variable for the data to be sent.

mode - The variable defines SPI mode, its value may be 1
or 3 in accordance with the mode. In mode 1 the data are
read on falling edge, in mode 3 on rising edge.

InputPin - The input pin is chosen in accordance with this
variable.

Return values:
SHIFT_BYTE_OUTIN_CODE + read data
NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

To send a 0x4C Byte in SPI mode 3 and at the same time
to read input data on the | pin, call function

QShiftByte OutIn(0x4C, SHIFT MODE3, SHIFT OUTIN
PINI) ;

1.5.11 QCheckSupplyVoltag
e

In its answer the function sends a code corresponding
with the supply voltage measured on the VDD pin of the
programmer. See constants defining possible returned
values.

void __ stdcall QCheckSupplyVoltage(void);
Return values:

SUPPLY_VOLTAGE_CODE + SUPPLY_VOLTAGE_xV

Page 8

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example: To check the VDD supply voltage value, call
QCheckSupplyVoltage() function and then read the result
with AGet() function. The AGet() will return for example
0x701, it means that on the VDD there is supply
voltage>2Vand <5V.

if (AGet (data))
{if (data == SUPPLY_VOLTAGE_CODE | SUPPLY_VOLTAG
E 5V)

{// on the VDD pin there is 5V}
else if (data == SUPPLY_VOLTAGE_CODE | SUPPLY_V
OLTAGE 2V)

{// on the VDD pin there is voltage >2V}
else if (data == SUPPLY_VOLTAGE_CODE | SUPPLY_V
OLTAGE 0V)

{// on the VDD pin there is 0V}
}

1.5.12 QPoweronVppl3V

The function switches on the 13 V programming voltage
on the VPP pin of the programmer. If the overcurrent is
detected on the VPP pin after the voltage is switched on,
it is switched off. The function sends the operation result
as answer.

void _ stdcall QPoweronVpp1l3V(void);
Return values:

VPP_OK - Programming voltage has been switched on
successfully.

VPP_OCURR - Overcurrent detected, supply voltage was
switched off again.

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

1.5.13 QPoweroffVppl3V

The function switches off the 13 V programming voltage
on the VPP pin.

void __ stdcall QPoweroffVppl3V(void);

Return values:

oK

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

1.5.14 QSetDPullup

The function connects/disconnects the D pin 2k2 pull-up
resistor. In the default state the resistor is disconnected.

void __ stdcall QSetDPullup(bool dpullup_on);
Parameter:

dpullup_on - The variable specifies if the pull-up resistor
will be connected to (dpullup_on=True) or disconnected
(dpullup_on=False) from the D pin.

Return values:
(0] ¢
NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

1.5.15 QCheckGoButton

The function checks the programmer button and sends its
state as result. See constants defining possible returned
values.

void __stdcall QCheckGoButton(void);

Return values:

Page 9

GO _BUTTON_NOT_PRESSED
GO _BUTTON_PRESSED
NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Example:

To find out if the programmer button has been pressed,
call QCheckGoButton() function and then if the
AGet(data) function returns 0x901, the button has been
pressed.

if (data==GO BUTTON PRESSED)
{// the button is pressed}

1.5.16 QSetPrestoSpeed

The function sets the maximal clock frequency on the
C pin. This setting affects the speed of the signals
generated with QShifByte(), QShiftByte Outin() and
QSetPins(). See the constants definition.

void _ stdcall QSetPrestoSpeed(int speed);

Return values:

oK

NOT_OPENED - The programmer has not been opened.

Return values are returned via AGet() or
AGetBlocking() functions.

Parameter:
speed - Defines the programmer clock speed.
Example:

To set the maximal clock frequency for the QShiftByte...
functions up to 750 kHz, call function
QSetPrestoSpeed(PRESTO CLK4);

1.5.17 AGet

The function returns bool value which says whether an
answer is available. If the answer is available, its value is
returned in the function parameter.

bool _stdcall AGet(int *answer);
Return values:

The function returns True if the returned data are
available, if they are not, it returns False.

answer - Returned answer value.
Example:

To find out if the programmer has answered and what its
answer is, test it with function

if (AGet (data))
{ // the returned value is available in the dat
a variable}

1.5.18 AGetBlocking

The function waits until the answer is available and then
it returns the answer value.

int __stdcall AGetBlocking(void);
Return value:

The function returns answer value.
Example:

To wait until the programmer answer is available and
then to continue, use the AGetBlocking(). This function
can be used for example after the QOpenPresto() has
been called.

QOpenPresto (-1) ;
if (AGetBlocking()==OPEN_OK)
{// programmer open OK}
else
{// programmer open failed}

Page 10

1.6

1.5.19 AGetProgList

In a parameter the function returns list of the PRESTO
programmers, which are available.

Function definition:

void _ stdcall AGetProgList(int *sn_list, int count, int
*count_returned);

Parameters:

sn_list - Array of integer, which returns the list of the
serial numbers of the available PRESTO programmers.
The serial nubers are returned as 24bit values, same as
they are listed in the UP software.

count - Variable defining the number of the serial
numbers to be read.

count_returned - Variable returning number of serial
numbers, which have been returned in sn_list.

Return values:

Regardless of the fatal errors, the function returns list of
available programmers in sn_list and the number of the
returned serial numbers in the count_returned.

1.5.20 AClearFatalError

The function erases fatal error. After the error is erased
the PRESTO is closed and it must be opened again. No
commands in the queue will be executed and the answers
that should have come via AGet() or AGetBlocking() are
lost.

void __ stdcall AClearFatalError(void);

Answers

OPEN _OK = 0x100;
OPEN_NOTFOUND = 0x101;

OPEN_CANNOTOPEN = 0x102;
OPEN_ALREADYOPEN = 0x103;

1.7

CLOSE_OK = 0x200;
CLOSE_CANNOTCLOSE = 0x201;
POWERON_OK = 0x300;
POWERON_OCURR = 0x301;
GETPINS_CODE = 0x400;
GETPINS_PIND = 0x01;
GETPINS_PINL = 0x02;
GETPINS_PINP = 0x04;
GETPINS_PINI = 0x08;
OK = 0x500;
NOT_OPENED = 0x501;

SHIFT _BYTE_OUTIN CODE = 0x600;
SUPPLY_VOLTAGE_CODE = 0x700;
SUPPLY_VOLTAGE_OV = 0x00;
SUPPLY_VOLTAGE_2V = 0x01;
SUPPLY_VOLTAGE_5V = 0x03;

VPP_OK = 0x800;

VPP_OCURR = 0x801;
GO_BUTTON_NOT_PRESSED=0x900;
GO_BUTTON_PRESSED=0x901;

{1 or 2}

FATAL OVERCURRENTVDD
FATAL OVERCURRENTVPP
FATAL OVERVOLTAGEVDD

Constants

0x01; {or mask}
0x02; {or mask}
0x04; {or mask}

1.7.1 QSetPins constants

PINS HI = 0x3;
PINS_LO = 0x2;
PINS _HIZ = 0x1;
PINS D BIT = 0x0;
PINS C BIT = 0x2;
PINS P _BIT = 0x4;
PINS L BIT = 0x6;

Example:

PINS_D HI = PINS_HI << PINS_D BIT;
PINS_D _LO = PINS_LO << PINS_D BIT;
PINS_D HIZ = PINS HIZ << PINS_D BIT;

Page 11

1.8

1.7.2 QShiftByte/QShiftByt
e Outln constants

SHIFT OUTIN PIND 0x00; // InputPin value

SHIFT OUTIN PINL = 0x01;
SHIFT OUTIN PINP = 0x02;
SHIFT OUTIN PINI = 0x03;

SHIFT MODE1=0x01;
SHIFT MODE3=0x03;

1.7.3 QSetPrestoSpeed
constants

PRESTO CLK1=0x00; // 3MHz - default value
PRESTO_CLK2=0x01; // 1.5MHz
PRESTO_CLK4=0x02,‘ // 750kHz

PRESTO CLK32=0x03; // 93.75kHz

Fatal errors

None of the above described functions Q...() returns fatal
errors, they are generated asynchronously. If such an
error appears, the AGet() and AGetBlocking() repeats the
one error value until the error is erased with
AClearFatalError(). After the fatal error is erased, the
PRESTO is closed and it must be opened again. Any
instructions in the queue will not be executed and the
answers that should come via AGet() or AGetBlocking()
are lost.

//mode value

The fatal errors appear if the current drawn from the VPP
(13 V) power supply is higher than 70 mA or the current
drawn from the VDD (5 V) power supply is higher than
100 mA or if there is more than about 7V on the VDD

pin.

Attention! If the fatal error is caused by a voltage
over 7 V detected on the VDD pin, the fatal error
does not save the programmer against its damage.
First of all, the programmer must be immediately
disconnected from the voltage power supply.

1.9

12C warning

The PRESTO cannot read the C (SCL) pin. It cannot
work on the bus where there are devices doing
WAIT states and cannot be on the bus with another
master.

Page 12

2

Appendix A - Return
values of the

functions

QSetActiveLED OK

NOT OPENED
QPoweroffVdd OK

NOT OPENED
QShiftByte OK

NOT OPENED

QShiftByte Outin

SHIFT BYTE _OUTIN
CODE + read data

NOT_OPENED

QCheckSupplyVoltage

SUPPLY VOLTAGE_C
ODE +

SUPPLY VOLTAGE x
Vv

NOT_OPENED

QPoweronVppl3V

VPP_OK

13VonthePlison.

VPP_OCURR

Overcurrent was
found, 13V has
been switched off
again.

NOT_OPENED

QPoweroffVppl3V

OK

NOT_OPENED

QSetDPullup

OK

NOT_OPENED

QCheckGoButton

GO _BUTTON NOT P
RESSED

GO_BUTTON_PRESS
ED

NOT_OPENED

QSetPrestoSpeed

OK

NOT_OPENED

Function Retum value Sense
QOpenPresto OPEN_OK
OPEN_NOTFOUND
OPEN_CANNOTOPE
N
OPEN_ALREADYOPE
N
QClosePresto CLOSE_OK
CLOSE_CANNOTCLO [The programmer
SE was not open.
QPoweronVdd POWERON_OK
POWERON_OCURR [Higher current than
100 mA was drawn
from VDD pin after
the delayus time.
The voltage has
been switched off
again.
NOT OPENED
QSetPins OK
NOT OPENED
QGetPins GETPINS _CODE +
pins values
NOT _OPENED
QDelay OK
NOT _OPENED

Page 13

3

Document history

Document
revision

Modifications made

2014-10-21

Document created.

2015-05-20

Fixed description of QShiftByte and
QShiftByte_Outln functions.

2022-04-11

AGetProgList function description has been added.

Page 14

	Table of Contents
	1 presto.dll
	1.1 Introduction
	1.2 Programmer pins marking
	1.3 How to work with the programmer
	1.4 List of the functions
	1.5 Functions description
	1.5.1 QOpenPresto
	1.5.2 QClosePresto
	1.5.3 QSetPins
	1.5.4 QGetPins
	1.5.5 QDelay
	1.5.6 QPoweronVdd
	1.5.7 QPoweroffVdd
	1.5.8 QSetActiveLED
	1.5.9 QShiftByte
	1.5.10 QShiftByte_OutIn
	1.5.11 QCheckSupplyVoltage
	1.5.12 QPoweronVpp13V
	1.5.13 QPoweroffVpp13V
	1.5.14 QSetDPullup
	1.5.15 QCheckGoButton
	1.5.16 QSetPrestoSpeed
	1.5.17 AGet
	1.5.18 AGetBlocking
	1.5.19 AGetProgList
	1.5.20 AClearFatalError

	1.6 Answers
	1.7 Constants
	1.7.1 QSetPins constants
	1.7.2 QShiftByte/QShiftByte_OutIn constants
	1.7.3 QSetPrestoSpeed constants

	1.8 Fatal errors
	1.9 I2C warning

	2 Appendix A - Return values of the functions
	3 Document history

