
FORTE

Application note

FORTE_APP01 – forte.dll
description

ASIX s.r.o.
Na Popelce 38/17
150 00 Prague
Czech Republic

www.asix.net

support@asix.net

sales@asix.net

ASIX s.r.o. reserves the right to make changes to this document, the
latest version of which can be found on the Internet.

ASIX s.r.o. renounces responsibility for any damage caused by the use
of ASIX s.r.o. products.

© Copyright by ASIX s.r.o.

http://www.asix.net
mailto:support@asix.net
mailto:sales@asix.net

Table of Contents

forte.dll 51
51.1 Introduction

51.2 Programmer pins marking

51.3 How to work with the programmer

51.4 List of the functions

61.5 Functions description

6QOpenProg1.5.1

7QCloseProg1.5.2

7QSetActiveLED1.5.3

7QPoweronVdd1.5.4

8QPoweroffVdd1.5.5

8QPoweronVpp1.5.6

8QPoweroffVpp1.5.7

8QDelay1.5.8

9QDelay_ns1.5.9

9QSetPullUpDowns1.5.10

10QCheckGoButton1.5.11

10QCheckSupplyVoltage1.5.12

10QSetGPIOAnswer1.5.13

11QSetPins1.5.14

11QGetPins1.5.15

11QShiftByte1.5.16

12QShiftByte_OutIn1.5.17

12QShiftBytes1.5.18

13QShiftBytes_In1.5.19

13QShiftBytes_OutIn1.5.20

14QShiftBits1.5.21

14QShiftBits_OutIn1.5.22

15QSetShiftSpeed1.5.23

15Q1WireInit1.5.24

15Q1WireWriteByte1.5.25

16Q1WireReadByte1.5.26

16QI2CStart1.5.27

17QI2CStop1.5.28

17QI2CWriteByte1.5.29

17QI2CReadByte1.5.30

18QI2CSetSpeed1.5.31

18QAnI2CStart1.5.32

19QAnStop1.5.33

19AGet1.5.34

19AGetBlocking1.5.35

19AGetBlock1.5.36

20AGetStatus1.5.37

20AGetProgList1.5.38

21AClearFatalError1.5.39

211.6 Fatal errors

211.7 Answers

221.8 Constants

22QSetPins constants1.8.1

22QShift... constants1.8.2

22QSetShiftSpeed constants1.8.3

22QSetPullUpDowns constants1.8.4

23QI2CSetSpeed constants1.8.5

23QSetActiveLED constants1.8.6

23I2C analyzer constants1.8.7

Document history 242

Page 5

1

forte.dll

1.1 Introduction
Functions implemented in forte.dll enable setting and
reading of logical levels on single pins of FORTE
programmer. This way it is possible to make various
communication protocols.

Except for functions which enable controlling of the single
pins, the library contains also functions prepared for
communication via SPI, I2C and 1-Wire buses, functions
for supply and programming voltage controlling and
supply voltage and GO button reading.

1.2 Programmer pins
marking
Single pins are marked the same way as they are marked
on the box of the programmer.

Pin Type Description

P I/O, VPP logical input/output or VPP output

VDD PWR supply input/output

GND PWR ground

D, C, I, L, T, S, R I/O log. input/output

Table 1: Features of pins

Sense: I/O - input and output pin, VPP - programming
voltage

1.3 How to work with the
programmer
Instructions are executed in a queue what corresponds
with the USB way of work. The order of reading answers
corresponds with the order of the instructions (Q...
functions) given.

Returned data can be read either blocking way via
AGetBlocking or not blocking way via AGet function. For
not blocking reading of bigger amount of data it is also
possible to use AGetBlock together with AGetStatus
function.

Waiting for every answer, e.g. from QGetPins function,
would slow down the work dramatically. When it is not
needed to know the previous answer for continuation, it is
advisable to wait not blocking way and to read the
answers when they are available. In meantime other
functions can be called.

At some of the instructions it is advisable to wait for their
answer before continuing, it is for example QOpenProg.
The cycle instruction → FORTE → answer takes from
several milliseconds to tens of milliseconds.

Output functions are inserted to the queue and executed
consecutively, but their answers are sent already when
they are inserted to the queue. This applies also to the
delay functions.

The functions which read or measure something, answer
after they are executed.

1.4 List of the functions
void __stdcall QOpenProg(int sn);
void __stdcall QCloseProg(void);
void __stdcall QSetActiveLED(int led);
void __stdcall QPoweronVdd(int delayus, int Volt
age_mV);
void __stdcall QPoweroffVdd(void);

Page 6

void __stdcall QPoweronVpp(int Voltage_mV);
void __stdcall QPoweroffVpp(void);
void __stdcall QDelay(int delayus);
void __stdcall QDelay_ns(int delayns);
void __stdcall QSetPullUpDowns(int pullupdowns);

void __stdcall QCheckGoButton(void);
void __stdcall QCheckSupplyVoltage(void);
void __stdcall QSetGPIOAnswer(bool answer);
void __stdcall QSetPins(int pins);
void __stdcall QGetPins(void);
void __stdcall QShiftByte(int databyte, int mode
);
void __stdcall QShiftByte_OutIn(int databyte, in
t mode, int InputPin);
void __stdcall QShiftBytes(int *buf, int mode, i
nt count);
void __stdcall QShiftBytes_OutIn(int *buf, int m
ode, int InputPin, int Count);
void __stdcall QShiftBytes_In(int mode, int Inpu
tPin, int count);
void __stdcall QShiftBits(int data, int mode, in
t bits_count);
void __stdcall QShiftBits_OutIn(int data, int mo
de, int InputPin, int bits_count);
void __stdcall QSetShiftSpeed(int speed);
void __stdcall Q1WireInit(void);
void __stdcall Q1WireWriteByte(int data, int str
ong_pullup_time_us);
void __stdcall Q1WireReadByte(void);
void __stdcall QI2CStart(bool UseIntPullUps);
void __stdcall QI2CStop(void);
void __stdcall QI2CWriteByte(int databyte);
void __stdcall QI2CReadByte(bool ACK);
void __stdcall QI2CSetSpeed(int speed);
void __stdcall QAnI2CStart(void);
void __stdcall QAnStop(void);
bool __stdcall AGet(int *answer);
int __stdcall AGetBlocking(void);
bool __stdcall AGetBlock(int *buf, int count, in
t *count_returned);
bool __stdcall AGetStatus(int *NumberOfAnswers);

void __stdcall AGetProgList(int *sn_list, int co
unt, int *count_returned);

void __stdcall AClearFatalError(void);

1.5 Functions description

1.5.1 QOpenProg
The function tries to open a FORTE. If the sn variable is
- 1, the function opens one FORTE regardless of its serial
number. In other cases the sn means the FORTE serial
number. If the FORTE serial number is A6041234, the sn
should be 0x1234 or 0x041234. The serial number is
defined with last 4 or 6 signs in the hex form.

Function definition:

void __stdcall QOpenProg(int sn);

Parameter:

sn - Serial number of the programmer.

Return values:

OPEN_OK - Openning was not succesful.

OPEN_NOTFOUND - Programmer was not found.

OPEN_CANNOTOPEN - It was not possible to open the
programmer.

OPEN_ALREADYOPEN - Programmer si already open.

OPEN_BADDRIVERVERSION - Wrong version of the USB
driver.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

QOpenProg(0x041234); // open FORTE SN A6041234

Page 7

1.5.2 QCloseProg
It closes the FORTE and switches the output voltages off.

Function definition:

void __stdcall QCloseProg(void);

Return values:

CLOSE_OK

CLOSE_CANNOTCLOSE - Programmer has not been
opened.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.3 QSetActiveLED
The function switches on, off or sets blinking of the
ACTIVE LED of the FORTE programmer.

Function definition:

void __stdcall QSetActiveLED(int led);

Parameter:

led - The variable defines the required state of the
ACTIVE LED, see constants.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To switch the yellow programmer ACTIVE LED on, call
QSetActiveLED(LED_ACT_Y) function, to switch it off, call
QSetActiveLED(LED_ACT_OFF).

1.5.4 QPoweronVdd
The function switches on the supply voltage from the
programmer on its VDD pin, then it waits for specified
time and checks whether the current is over 100 mA. If
the current is higher, the programmer switches the
voltage off. If there is a short circuit on the VDD pin, the
supply voltage will not be present for much longer time
than the specified time is.

The function returns a value in accordance with the result
of the operation. Although the result is returned in about
20 ms, the voltage is already switched off, this is solved in
the HW. It is recommended to choose the time carefully,
because long specified time is dangerous for the
programmer circuits if there is an error in connections.

If the internal supply voltage from the programmer is
switched off, an external supply voltage 1.2 to 5.5 V may
be connected to the programmer. The data pins logical
levels are set in accordance with the VDD supply voltage.

When the supply voltage is under 1.8 V, the programmer
can communicate with reduced speed only.

Function definition:

void __stdcall QPoweronVdd(int delayus, int Voltage_mV);

Parameters:

delayus - Time in μs after what the overcurrent will be
checked.

Voltage_mV - The size of the voltage supplied from the
programmer in mV. The supply voltage can be between
1.2 and 5.5 V.

Return values:

POWERON_OK - The supply voltage has been switched
on successfully.

POWERON_OCURR - Overcurrent had been detected,
supply voltage was switched off.

POWERON_WRONG_LEVEL - Wrong level of the voltage

Page 8

has been entered.

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To switch on the internal supply voltage of 3.3 V on the
VDD pin and to check the overcurrent after 10 ms, call
function

QPoweronVdd(10000, 3300);

1.5.5 QPoweroffVdd
The function switches off the VDD supply voltage
provided by the programmer.

Definice funkce:

void __stdcall QPoweroffVdd(void);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.6 QPoweronVpp
The function switches on the programming voltage on the
P pin of the programmer. If the overcurrent is detected on
the P pin after the voltage is switched on, it is switched
off. The function sends the operation result as answer.

Function definition:

void __stdcall QPoweronVpp(int Voltage_mV);

Parameter:

Voltage_mV - The size of the programming voltage in
mV. The voltage can be in range 6.5 to 17 V.

Return values:

VPP_OK - Programming voltage has been switched on.

VPP_OCURR - Overcurrent has been detected, the
programming voltage has been switched off.

VPP_WRONG_LEVEL - Wrong level of the voltage has
been entered.

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.7 QPoweroffVpp
The function switches off the programming voltage on the
P pin.

Function definition:

void __stdcall QPoweroffVpp(void);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.8 QDelay
The programmer waits for specified time.

Function definition:

Page 9

void __stdcall QDelay(int delayus);

Parameter:

delayus - Waiting time in μs.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To do a delay of 7 ms in the signals, call function

QDelay(7000);

1.5.9 QDelay_ns
The programmer waits for specified time. The timer
granularity is 16.67 ns, the specified value is rounded to
the nearest higher multiple of 16.67 ns.

There can appear a longer delay in the signals, because
of the commands delays on USB.

Functions definition:

void __stdcall QDelay_ns(int delayns);

Parameter:

delayns - Waiting time in ns.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To do a delay of at least 33 ns in the signals, call function

QDelay_ns(33);

Programmer will do delay of 16,67*2=33,34 ns.

1.5.10 QSetPullUpDowns
The function connects/disconnects the 2k4 pull-up or
pull-down resistors on selected pins of the programmer.
In the default state the resistors are disconnected.

Function definition:

void __stdcall QSetPullUpDowns(int pullupdowns);

Parameter:

pullupdowns - Variable specifying which resistors will be
connected to the data pins, see constants.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To connect the D pin pull-up resistor and L pin pull-down,
call function

QSetPullUpDowns((PULLUP<<D_PULL)|

Page 10

(PULLDOWN<<L_PULL));

1.5.11 QCheckGoButton
The function checks the programmer button and sends its
state as result.

Function definition:

void __stdcall QCheckGoButton(void);

Return values:

GO_BUTTON_NOT_PRESSED

GO_BUTTON_PRESSED

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To find out if the programmer button has been pressed,
call QCheckGoButton function and then if the AGet(data)
function returns 0x90001, the button has been pressed.

if (data==GO_BUTTON_PRESSED)
 {// the button is pressed}

1.5.12 QCheckSupplyVoltag
e

In its answer the function sends a code corresponding
with the supply voltage measured on the VDD pin of the
programmer.

Function definition:

void __stdcall QCheckSupplyVoltage(void);

Return values:

SUPPLY_VOLTAGE_CODE + measured voltage in V x10,

e.g. 33 means 3.3 V

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example: To check the VDD supply voltage value, call
QCheckSupplyVoltage function and then read the result
with AGet function. The AGet will return for example
0x7001B, where 0x1B is 10x the size of the voltage in
hexadecimal form, so 27 in decimal form, then the
measured voltage is 2.7 V.

1.5.13 QSetGPIOAnswer
This function enables or disables the answers from the
output functions. After the programmer has been opened,
the answers are always enabled. Even when the answers
are disabled, functions always return NOT_OPENED, when
they are called and the programmer is not open.

When there appears a fatal error, it replaces the
answer of the called function. When the output
functions answers are disabled, the fatal errors are
returned after calling of the input functions only.

This function affects answers of QDelay, QDelay_ns,
QSetPins, QShiftByte, QShiftBytes, QShiftBits,
QSetShiftSpeed, Q1WireWriteByte, QI2CStart, QI2CStop,
QI2CWriteByte and QI2CSetSpeed functions.

Function definition:

void __stdcall QSetGPIOAnswer(bool answer);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or

Page 11

AGetBlock functions.

1.5.14 QSetPins
The function sets the output pins of the programmer in
accordance with the constants. The D and C, I and L, P
and R, S and T pins are always set together. When only
one pin of the coulple is defined, the state of the second
pin is set in accordance with its saved value.

The state of the other not defined pins does not change.

Function definition:

void __stdcall QSetPins(int pins);

Parameter:

pins - The variable defines required values on the
programmer pins. See constants.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To set D to log.1, C to log.0 and the other pins leave
unchanged, call function

QSetPins((PINS_HI<<PINS_D_BIT)|
(PINS_LO<<PINS_C_BIT));

1.5.15 QGetPins
The function sends back the values that the programmer
sees on its pins. See constants for QGetPins.

Function definition:

void __stdcall QGetPins(void);

Return values:

GETPINS_CODE + pins values

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To read the I pin state, call the QGetPins function and
then read returned data using AGet function. The AGet
function for example returns 0x4000C value. In this value
all the pins values are returned, so the I pin state must be
filtered with GETPINS_PINI constant. In our example the
value which has been read on the I pin is log. 1.

int data;
if (AGet(&data))
 { if ((data & GETPINS_PINI)==GETPINS_PINI)
 { //on the I pin there is log. 1}
 else {//on the I pin there is log. 0}
 }

1.5.16 QShiftByte
The function sends a Byte on the D pin and generates
clock signal on the C pin. The Byte value is specified by
the databyte variable. The mode variable specifies a
mode in accordance with the SPI definition.

When the user selects a mode that does not correspond
with the current logic level on the C pin, the C logic level
is first set to the required state. For example if there is
log.0 on the C pin and mode=3, the C will first change to

Page 12

log. 1 and then the databyte will be sent.

The LSB is sent first, the communication frequency can be
set using QSetShiftSpeed function.

Function definition:

void __stdcall QShiftByte(int databyte, int mode);

Parameters:

databyte - Variable for data to be sent.

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To send a 0x3A Byte in the SPI mode 1, call function

QShiftByte(0x3A, SHIFT_MODE1);

1.5.17 QShiftByte_OutIn
The function generates the C and D signals in accordance
with specified parameters as QShiftByte function do, but
in addition it also reads data from the chosen pin at the
same time. The input pin can be chosen with InputPin
variable value. See constants defining possible values of
the InputPin variable.

If the D pin is chosen as input, it is first set to the high

impedance state and the programmer only reads.

Function definition:

void __stdcall QShiftByte_OutIn(int databyte, int mode, int
InputPin);

Parameters:

databyte - Variable for the data to be sent.

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

InputPin - The input pin is chosen in accordance with this
variable.

Return values:

SHIFT_BYTE_OUTIN_CODE + read data

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To send a 0x4C Byte in SPI mode 3 and at the same time
to read input data on the I pin, call function

QShiftByte_OutIn(0x4C, SHIFT_MODE3, SHIFT_OUTIN_
PINI);

1.5.18 QShiftBytes
Similarly as the QShiftByte, which sends one Byte only,
this function sends more Bytes on the D and C pins.

Function definition:

void __stdcall QShiftBytes(int *buf, int mode, int count);

Parameters:

Page 13

buf - Array of data to be sent.

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

count - Variable defining the number of Bytes to be sent.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.19 QShiftBytes_In
Same as the QShiftByte_OutIn, this function reads data
from the selected input pin and generates clock signal on
the C pin, but it is also able to read more Bytes of data on
one calling, which can be useful e.g. for large SPI
memories reading.

This function is input only, it cannot send data.

If the D pin is chosen as input, it is first set to the high
impedance state.

Function definition:

void __stdcall QShiftBytes_In(int mode, int InputPin, int
count);

Parameters:

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

InputPin - The input pin is chosen in accordance with this

variable.

count - Variable defining the number of Bytes to be read.
With this function it is possible to read maximally
512 Bytes.

Return values:

SHIFT_BYTE_OUTIN_CODE + read data - A value is
returned for each of the read Bytes.

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To read 100 Bytes in SPI mode 0 on the I pin, call
function

QShiftBytes_In(SHIFT_MODE0, SHIFT_OUTIN_PINI, 10
0);

1.5.20 QShiftBytes_OutIn
Similarly as the QShiftByte_OutIn, which sends and reads
one Byte only, this function sends more Bytes on the D
and C pins and reads from a selected pin.

Function definition:

void __stdcall QShiftBytes_OutIn(int *buf, int mode, int
InputPin, int Count);

Parameters:

buf - Array of data to be sent.

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

InputPin - The input pin is chosen in accordance with this
variable.

Page 14

count - Variable defining the number of Bytes to be sent.

Return values:

SHIFT_BYTE_OUTIN_CODE + read data - A value is
returned for each of the read Bytes.

OK

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.21 QShiftBits
The function sends selected number of bits on pins D and
C the same way as QShiftByte sends Bytes.

It can be useful for some protocols to be able not to send
data in Bytes only.

The LSB is sent first, the communication frequency can be
set using QSetShiftSpeed function.

Function definition:

void __stdcall QShiftBits(int data, int mode, int
bits_count);

Parameter:

data - Variable for the data to be sent.

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

bits_count - Variable defining number of bits to be sent.
It is possible to send 1 to 16 bits.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To send 2 bits 0, 1, in SPI mode 0, call function

QShiftByte(0x02, SHIFT_MODE0,2);

1.5.22 QShiftBits_OutIn
The function sends selected number of bits on pins D and
C and reads on a selected pin the same way as
QShiftByte_OutIn sends Bytes.

It can be useful for some protocols to be able not to send
data in Bytes only.

If the D pin is chosen as input, it is first set to the high
impedance state and the programmer only reads.

The LSB is sent first, the communication frequency can be
set using QSetShiftSpeed function.

Function definition:

void __stdcall QShiftBits_OutIn(int data, int mode, int
InputPin, int bits_count);

Parameters:

data - Variable for the data to be sent.

mode - Variable defining SPI mode, its value may be 0, 1,
2 or 3.

InputPin - The input pin is chosen in accordance with this
variable.

bits_count - Variable defining number of bits to be sent.

Page 15

It is possible to send 1 to 16 bits.

Return values:

OK

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Example:

To send 4 bits 0xA, in SPI mode 3 and read on the I pin,
call function

QShiftBits_OutIn(0x0A, SHIFT_MODE3, SHIFT_OUTIN_
PINI, 4);

1.5.23 QSetShiftSpeed
The function sets the clock frequency on the C pin for
QShift... functions.

Function definition:

void __stdcall QSetShiftSpeed(int speed);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

WRONG_INPUT - Wrongly entered parameters.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Parameter:

speed - Defines the clock speed, see constants
definition.

Example:

To set the clock frequency for QShift... functions to 1 MHz,
call function

QSetShiftSpeed(SHIFT_CLK_1000kHz);

1.5.24 Q1WireInit
This function does the initialization sequence on the
1-Wire bus, it makes a reset pulse and reads a presence
pulse from the device.

The 1-Wire bus functions communicate on the P pin of the
programmer. On the bus a pull-up resistor in accordance
with the 1-Wire specification have to be connected.

Function definition:

void __stdcall Q1WireInit(void);

Return values:

_1WIRE_PRESENT - Device has answered, log.0 has
been read on the bus.

_1WIRE_NOT_PRESENT - Device has not answered,
log.1 has been read on the bus.

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.25 Q1WireWriteByte
It sends a Byte on the 1-Wire bus. When a nonzero time
for strong pull-up is selected, log.1 is connected to the
bus during this time.

Page 16

Strong pull-up connection is implemented as
connection of log.1 to the bus, the maximal current
drawn from the pin must not be higher than the
current stated in the programmer specifications in
its manual.

Function definition:

void __stdcall Q1WireWriteByte(int data, int
strong_pullup_time_us);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Parameter:

data - Variable for the data to be sent. Data are sent LSB
first.

strong_pullup_time_us - This variable defines the time,
during which the strong pull-up (log.1) should be
connected, after the Byte has been sent on the bus.

Example:

To send 0xCC Byte and not to use the strong pull-up, call
function

QSetPrestoSpeed(0xCC, 0);

1.5.26 Q1WireReadByte
The function reads one Byte from the 1-Wire bus.

Function definition:

void __stdcall Q1WireReadByte(void);

Return values:

_1WIRE + read data

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.27 QI2CStart
This function makes a start bit on the I2C bus.

The I2C bus functions communicate on the D (SDA) and C
(SCL) pins of the programmer. With a parameter it is
possible to select if the internal pull-up resistors should be
connected to both of the pins or if there are external
resistors.

Communication frequency can be set using QI2CSetSpeed
function.

Function definition:

void __stdcall QI2CStart(bool UseIntPullUps);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Parameter:

UseIntPullUps - When it is true, internal pull-up resistors

Page 17

are used. When it is false, internal pull-up resistors remain
in the same state as they were before the function has
been called.

1.5.28 QI2CStop
This function makes a stop bit on the I2C bus.

Communication frequency can be set using QI2CSetSpeed
function.

Function definition:

void __stdcall QI2CStop(void);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.29 QI2CWriteByte
This function writes a Byte on the I2C bus.

Communication frequency can be set using QI2CSetSpeed
function.

Function definition:

void __stdcall QI2CWriteByte(int databyte);

Return values:

NOT_OPENED - The programmer has not been opened.

I2C_ACK - After the Byte had been sent, the device
answered (ACK).

I2C_NACK - After the Byte had been sent, the device did
not answer (NO ACK).

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Parameter:

databyte - Variable for data to be sent. The Byte is sent
MSB first.

Example:

To send 0xAB Byte, call function

QI2CWriteByte(0xAB);

1.5.30 QI2CReadByte
This function reads a Byte from I2C bus.

Communication frequency can be set using QI2CSetSpeed
function.

Function definition:

void __stdcall QI2CReadByte(bool ACK);

Return values:

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

I2C_CODE + read data

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Parameter:

ACK - When it is true, programmer sends ACK, after the
Byte has been sent, else it sends NO ACK.

Page 18

1.5.31 QI2CSetSpeed
This function sets the communication frequency for
functions communicating on the I2C bus. See constants
specification.

Function definition:

void __stdcall QI2CSetSpeed(int speed);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - An analyzer is running.

Using QSetGPIOAnswer function it is possible to disable
the answers, in such case the function returns
NOT_OPENED only, when the programmer is not open.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

Parameter:

speed - Specifies selected communication frequency.
After the programmer has been opened, the frequency is
set to 100 kHz. See constants specification.

Example:

To set the I2C communication frequency to 400 kHz, call
function

QI2CSetSpeed(I2C_CLK_400kHz);

1.5.32 QAnI2CStart
The function starts I2C bus analyzer. The analyzer
monitors communication on the connected bus, the read
data can be obtained using AGet, AGetBlocking or
AGetBlock functions.

When the analyzer is running, it is not possible to call
other functions which work with the programmer.

The analyzer can be stoped by AnStop function calling.

Pin Connection

D SDA

C SCK

GND GND

VDD VDD

Table 2: Programmer connection

Function definition:

void __stdcall QAnI2CStart(void);

Return values:

OK

NOT_OPENED - The programmer has not been opened.

ERROR_AN_RUNNING - Some analyzer is already
ruinning.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

The read data are returend like (see constants):
AN_DATA+AN_I2C_ACK

AN_DATA+AN_I2C_NACK

AN_DATA+AN_I2C_START

AN_DATA+AN_I2C_STOP

AN_DATA+databyte

Example:

 int i, intdata;

 // start the analyzer
 QAnI2CStart();
 // read result
 intdata=AGetBlocking();

Page 19

 // read 100 captured values
 i=0;
 while (i<100) {
 intdata=AGetBlocking();
 i++;
 }
 // stop the analyzer
 QAnStop();
 // read result
 intdata=AGetBlocking();

1.5.33 QAnStop
The function stops a running analyzer.

Function definition:

void __stdcall QAnStop(void);

Returned values:

OK

NOT_OPENED - The programmer has not been opened.

AN_NOT_RUNNING - No analyzer has been running.

Return values are returned via AGet, AGetBlocking or
AGetBlock functions.

1.5.34 AGet
The function returns bool value which says whether an
answer is available. If the answer is available, its value is
returned in the function parameter.

Function definition:

bool __stdcall AGet(int *answer);

Return values:

The function returns True if the returned data are
available, if they are not, it returns False.

answer - Returned answer value.

Example:

To find out if the programmer has answered and what its
answer is, test it with function

int data;
if (AGet(&data)!=0)
 { // the returned value is available in the dat
a variable}

1.5.35 AGetBlocking
The function waits until the answer is available and then
it returns the answer value.

Function definition:

int __stdcall AGetBlocking(void);

Return value:

The function returns answer value.

Example:

To wait until the programmer answer is available and
then to continue, use the AGetBlocking. This function can
be used for example after the programmer has been
opened.

QOpenProg(-1);
if (AGetBlocking()==OPEN_OK)
 {// programmer open OK}
else
 {// programmer open failed}

1.5.36 AGetBlock
The function returns requested number of answers. When
there is not enough answers available, it returns as much
answers as much are available. The function is not
blocking.

It is useful to use this function together with AGetStatus
function.

Function definition:

Page 20

bool __stdcall AGetBlock(int *buf, int count, int
*count_returned);

Parameters:

buf - Array of integer, where the answers are returned.

count - Variable defining number of answers to be read.

count_returned - Variable returning number of answers,
which have been returned in buf.

Return values:

The function returns False, when there appears a fatal
error. In such a case it returns only one value in the array,
only the error code.

When there is no fatal error, function returns True and in
the buf array it returns the answers, in the
count_returned variable it returns number of the
returned values.

The function can return maximally 65536 values.

Example: To wait until 10 answers is available and
afterwards to read them at once, use AGetBlock function

int data[10];
int data_returned;
int i;

i=0;
while (i<10)
 {
 if (!AGetStatus(&i))
 { // Fatal error, exit with error report}
 }
if (!AGetBlock(data, 10, &data_returned))
 { // Fatal error, exit with error report}

1.5.37 AGetStatus
In a parameter the function returns number of answers,
which are available.

Function definition:

bool __stdcall AGetStatus(int *NumberOfAnswers);

Parameter:

NumberOfAnswers - Variable returning number of
answers, which are available.

Return values:

Function returns False, when there appears a fatal error.

When there appears no fatal error, function returns True
and in the NumberOfAnswers it returns number of
answers, which are available for read.

1.5.38 AGetProgList
In a parameter the function returns list of the FORTE
programmers, which are available.

Function definition:

void __stdcall AGetProgList(int *sn_list, int count, int
*count_returned);

Parameters:

sn_list - Array of integer, which returns the list of the
serial numbers of the available FORTE programmers. The
serial nubers are returned as 24bit values, same as they
are listed in the UP software.

count - Variable defining the number of the serial
numbers to be read.

count_returned - Variable returning number of serial
numbers, which have been returned in sn_list.

Return values:

Regardless of the fatal errors, the function returns list of
available programmers in sn_list and the number of the
returned serial numbers in the count_returned.

Page 21

1.5.39 AClearFatalError
The function erases fatal error.

After the error is erased the FORTE is closed and it must
be opened again. No commands in the queue will be
executed and the answers that should have come via
AGet, AGetBlocking or AGetBlock are lost.

Function definition:

void __stdcall AClearFatalError(void);

1.6 Fatal errors
None of the above described functions Q... returns fatal
errors, they are generated asynchronously. If such an
error appears, the AGet, AGetBlocking and AGetBlock
repeats the one error value until the error is erased with
AClearFatalError. After the fatal error is erased, the FORTE
is closed and it must be opened again. Any instructions in
the queue will not be executed and the answers that
should come via AGet, AGetBlocking or AGetBlock are
lost.

The fatal errors appear if there is overcurrent detected on
the supply voltage or on the programming voltage power
supply or if there is more than 6 V measured on the VDD
pin.

Attention! If the fatal error is caused by a voltage over
6 V detected on the VDD pin, the fatal error does not save
the programmer against its damage. First of all, the
programmer must be immediately disconnected from the
power supply.

1.7 Answers
OPEN_OK = 0x10000;
OPEN_NOTFOUND = 0x10001;
OPEN_CANNOTOPEN = 0x10002;
OPEN_ALREADYOPEN = 0x10003;
OPEN_BADDRIVERVERSION = 0x10004;

CLOSE_OK = 0x20000;
CLOSE_CANNOTCLOSE = 0x20001;
POWERON_OK = 0x30000;
POWERON_OCURR = 0x30001;
POWERON_WRONG_LEVEL = 0x30002;

GETPINS_CODE = 0x40000; //
ored with GETPINS_PINx
 GETPINS_PIND = 0x01;
 GETPINS_PINC = 0x02;
 GETPINS_PINI = 0x04;
 GETPINS_PINL = 0x08;
 GETPINS_PINP = 0x10;
 GETPINS_PINR = 0x20;
 GETPINS_PINS = 0x40;
 GETPINS_PINT = 0x80;
OK = 0x50000;
NOT_OPENED = 0x50001;
WRONG_INPUT = 0x50002;
AN_NOT_RUNNING = 0x50003;
ERROR_AN_RUNNING = 0x50004;
SHIFT_BYTE_OUTIN_CODE = 0x60000;
SUPPLY_VOLTAGE_CODE = 0x70000;
VPP_OK = 0x80000;
VPP_OCURR = 0x80001;
VPP_WRONG_LEVEL = 0x80002;
GO_BUTTON_NOT_PRESSED=0x90000;
GO_BUTTON_PRESSED=0x90001;
SHIFT_BITS_OUTIN_CODE = 0xA0000;
_1WIRE = 0xB0000;
_1WIRE_PRESENT = 0xB0100;
_1WIRE_NOT_PRESENT = 0xB0200;
I2C_CODE = 0xC0000;
I2C_ACK = 0xC0100;
I2C_NACK = 0xC0200;

FATAL_OVERCURRENTVDD = 0x01;
FATAL_OVERCURRENTVPP = 0x02;
FATAL_OVERVOLTAGEVDD = 0x04;
FATAL_OTHER = 0x08;

Page 22

1.8 Constants

1.8.1 QSetPins constants
PINS_HIZ = 0x01;
PINS_LO = 0x02;
PINS_HI = 0x03;
PINS_D_BIT = 0x00;
PINS_C_BIT = 0x02;
PINS_I_BIT = 0x04;
PINS_L_BIT = 0x06;
PINS_P_BIT = 0x08;
PINS_R_BIT = 0x0A;
PINS_S_BIT = 0x0C;
PINS_T_BIT = 0x0E;

Příklad:

PINS_D_HI = PINS_HI << PINS_D_BIT;
PINS_D_LO = PINS_LO << PINS_D_BIT;
PINS_D_HIZ = PINS_HIZ << PINS_D_BIT;

1.8.2 QShift... constants
SHIFT_OUTIN_PIND = 0x00;
SHIFT_OUTIN_PINI = 0x02;
SHIFT_OUTIN_PINL = 0x03;
SHIFT_OUTIN_PINP = 0x04;
SHIFT_OUTIN_PINR = 0x05;
SHIFT_OUTIN_PINS = 0x06;
SHIFT_OUTIN_PINT = 0x07;

SHIFT_MODE0=0x00;
SHIFT_MODE1=0x01;
SHIFT_MODE2=0x02;
SHIFT_MODE3=0x03;

1.8.3 QSetShiftSpeed
constants

SHIFT_CLK_15000kHz = 1;
SHIFT_CLK_10000kHz = 2;
SHIFT_CLK_7500kHz = 3;
SHIFT_CLK_6000kHz = 4;
SHIFT_CLK_5000kHz = 5;
SHIFT_CLK_3750kHz = 6;
SHIFT_CLK_3330kHz = 7;
SHIFT_CLK_3000kHz = 8;
SHIFT_CLK_2500kHz = 9;
SHIFT_CLK_2000kHz = 10;
SHIFT_CLK_1500kHz = 11;
SHIFT_CLK_1000kHz = 12;
SHIFT_CLK_750kHz = 13;
SHIFT_CLK_600kHz = 14;
SHIFT_CLK_500kHz = 15;
SHIFT_CLK_400kHz = 16;
SHIFT_CLK_375kHz = 17;
SHIFT_CLK_333kHz = 18;
SHIFT_CLK_300kHz = 19;
SHIFT_CLK_250kHz = 20;
SHIFT_CLK_200kHz = 21;
SHIFT_CLK_150kHz = 22;
SHIFT_CLK_120kHz = 23;
SHIFT_CLK_100kHz = 24;
SHIFT_CLK_75kHz = 25;
SHIFT_CLK_60kHz = 26;
SHIFT_CLK_50kHz = 27;
SHIFT_CLK_40kHz = 28;
SHIFT_CLK_37kHz = 29;
SHIFT_CLK_33kHz = 30;
SHIFT_CLK_30kHz = 31;

1.8.4 QSetPullUpDowns
constants

PULLDOWN = 0x01;
PULLUP = 0x02;
D_PULL = 0x00;
C_PULL = 0x02;
I_PULL = 0x04;

Page 23

L_PULL = 0x06;
S_PULL = 0x08;
T_PULL = 0x0A;
P_PULL = 0x0C;
R_PULL = 0x0E;

1.8.5 QI2CSetSpeed
constants

I2C_CLK_100kHz = 0x00;
I2C_CLK_400kHz = 0x01;
I2C_CLK_1MHz = 0x02;

1.8.6 QSetActiveLED
constants

LED_ACT_OFF = 0x00;
LED_ACT_Y = 0x01;
LED_ACT_R = 0x02;
LED_ACT_Y_BLINK = 0x03;
LED_ACT_R_BLINK = 0x04;
LED_ACT_Y_FAST_BLINK = 0x05;
LED_ACT_R_FAST_BLINK = 0x06;
LED_ACT_YR_FAST_BLINK = 0x07;

1.8.7 I2C analyzer
constants

AN_DATA = 0xD0000;
AN_I2C_ACK = 0x0100;
AN_I2C_NACK = 0x0200;
AN_I2C_START = 0x0400;
AN_I2C_STOP = 0x0800;
AN_I2C_DATAMASK = 0x00FF;

Page 24

2

Document history

Document
revision

Modifications made

2015-04-02 Dokument created.

2017-02-01 Functions defintions have been fixed.

Functions descriptions have been completed and
also the chapter How to work with the programmer.

Added description of new functions AGetProgList,
QShiftBytes, QShiftBytes_OutIn.

2020-12-01 Added description of QAnI2CStart, QAnStop
functions.

Some examples have been fixed.

	Table of Contents
	1 forte.dll
	1.1 Introduction
	1.2 Programmer pins marking
	1.3 How to work with the programmer
	1.4 List of the functions
	1.5 Functions description
	1.5.1 QOpenProg
	1.5.2 QCloseProg
	1.5.3 QSetActiveLED
	1.5.4 QPoweronVdd
	1.5.5 QPoweroffVdd
	1.5.6 QPoweronVpp
	1.5.7 QPoweroffVpp
	1.5.8 QDelay
	1.5.9 QDelay_ns
	1.5.10 QSetPullUpDowns
	1.5.11 QCheckGoButton
	1.5.12 QCheckSupplyVoltage
	1.5.13 QSetGPIOAnswer
	1.5.14 QSetPins
	1.5.15 QGetPins
	1.5.16 QShiftByte
	1.5.17 QShiftByte_OutIn
	1.5.18 QShiftBytes
	1.5.19 QShiftBytes_In
	1.5.20 QShiftBytes_OutIn
	1.5.21 QShiftBits
	1.5.22 QShiftBits_OutIn
	1.5.23 QSetShiftSpeed
	1.5.24 Q1WireInit
	1.5.25 Q1WireWriteByte
	1.5.26 Q1WireReadByte
	1.5.27 QI2CStart
	1.5.28 QI2CStop
	1.5.29 QI2CWriteByte
	1.5.30 QI2CReadByte
	1.5.31 QI2CSetSpeed
	1.5.32 QAnI2CStart
	1.5.33 QAnStop
	1.5.34 AGet
	1.5.35 AGetBlocking
	1.5.36 AGetBlock
	1.5.37 AGetStatus
	1.5.38 AGetProgList
	1.5.39 AClearFatalError

	1.6 Fatal errors
	1.7 Answers
	1.8 Constants
	1.8.1 QSetPins constants
	1.8.2 QShift... constants
	1.8.3 QSetShiftSpeed constants
	1.8.4 QSetPullUpDowns constants
	1.8.5 QI2CSetSpeed constants
	1.8.6 QSetActiveLED constants
	1.8.7 I2C analyzer constants

	2 Document history

