
DPIC / EPIC
User�s Guide

ASIX s.r.o.
Grafická 37

150 00 Prague
Czech Republic

E-mail: asix@asix.cz
WWW: http://www.asix.cz/
Tel./fax: +420 - 2 - 573 123 78

Table of Contents

 1. General Information... 7

2. EPIC16A Emulator - HW Description 9

2.1 Front Panel .. 9
2.1.1 Emulation Connector ... 9
2.1.2 Probe Connector .. 10
2.1.3 Color Identification of Probes .. 10

2.2 Rear Panel.. 10
2.2.1 PC to EPIC16A Connection ... 10
2.2.2 Power Supply Connector ... 11

3. Integrated Development Environment 12

3.1 Screen Layout .. 12
3.1.1 Program Elements of an Integrated Environment 13
3.1.2 Menu ... 13
3.1.3 Watch Window ... 14

3.1.3.1 Moving a Window Around the Screen .. 15
3.1.3.2 Moving Through a Text in a Window ... 15

3.1.4 Dialog Box... 16
3.1.5 Scroll Bar .. 16
3.1.6 Buttons .. 17
3.1.7 Line Editors .. 17
3.1.8 List Boxes.. 18
3.1.9 Subsidiary Program Elements .. 19

 3.2 Main Menu .. 19
3.2.1 Menu ≡≡≡≡≡ ... 19
3.2.2 File ... 20
3.2.3 Window ... 21
3.2.4 Edit .. 22
3.2.5 Views ... 22
3.2.6 Run .. 23
3.2.7 Debug .. 24
3.2.8 Option ... 24

3.3 Source Text, Project and Object.. 25
3.3.1 Arrangement of Directories .. 25
3.3.2 Source Text and Project... 26
3.3.3 Object File .. 26
3.3.4 Project ... 26
3.4 Source Text Editor .. 27
3.4.1 Source Text Editing .. 27
3.4.2 Additional Editor Utilities ... 28

3.5 Program / Data Memory Editor.. 28

3.6 Disassembler .. 29

3.7 Trace buffer .. 30
3.7.1 Trace Memory Arrangement .. 31
3.7.2 Setting and Selections .. 32

3.8 Watch (displaying of user-defined variables) 32
3.8.1 Formatting and Editing a Value ... 33

3.9 Displaying and Editing the Stack ... 34
3.9.1 Stack value editor... 34
3.9.2 Stack Pointer Editor .. 34

3.10 Displaying and editing of events ... 35
3.10.1 Displaying of Events .. 35
3.10.2 Editing of Events .. 36

3.11 Global Events ... 37

3.12 Emulator Setting.. 38

3.13 Chip Options .. 40

3.14 Setting of the Compiler Parameters 41

3.15 Setting of the Environment Parameters 42

3.16 Setting of the Memory Listing Parameters 43
3.16.1 Data selector ... 43
3.16.2 Editor for the Setting of the Listing ... 44

3.17 Setting of the Trace Buffer Listing 44

3.18 Coloring the Environment .. 45

3.19 Accessory Elements on the Screen 46
3.19.1 Status ... 46
3.19.2 Program Manager ... 47
3.19.3 Available Memory Indicator ... 47

3.2 Window for Error Messages of the Compiler 47

3.21 ASCII Chart ... 48

3.22 Calculator... 48

3.23 Videostop .. 49

3.24 Information .. 49

3.25 Error Messages of the IDE ... 49

3.26 Information Messages of the IDE .. 52

4. Compiler of the Assembler Language.............................. 54

4.1 Program Source Text ... 55

4.2 Constants .. 55
4.2.1 Numeric Constants... 55
4.2.2 Text Constants .. 55

4.3 Expressions .. 56

4.4 Symbols .. 57
4.4.1 Symbolic Names of Constant .. 58
4.4.2 Data Types .. 58
4.4.3 Labels .. 60

4.5 Instruction Set of the PIC Processors 61
4.5.1 Byte-oriented Operations .. 61
4.5.2 Bit-oriented Operations ... 62
4.5.3 Literal Operations ... 62
4.5.4 Control Operations .. 62
4.5.5 PIC16C5x Instruction Set Summary .. 63
4.5.6 PIC16Cxx Instruction Set Summary .. 68

6 DPIC/EPIC - User�s Guide

4.6 Compiler Directives ... 69
4.6.1 Directive Overview .. 70
4.6.2 BANK Directive ... 70

4.6.3 BIT Directive... 70
4.6.4 BYTE Directive .. 71
4.6.5 CONST BYTE Directive ... 71
4.6.6 DB Directive ... 72
4.6.7 DW Directive .. 72
4.6.8 END Directive .. 72
4.6.9 EQU Directive .. 72
4.6.10 IF - ELSE - ENDIF Directives .. 73
4.6.11 INCLUDE Directive .. 73
4.6.12 MACRO - LOCAL - ENDM Directives 73
4.6.13 ORG Directive .. 75
4.6.14 PRAGMA Directive ... 75
4.6.15 SET Directive ... 75
4.6.16 TABLE Directive ... 75

4.7 Error Messages and Warnings of the Compiler 76

Notes: ... 80

Basic Information 7

 1. General Information

Congratulations on selecting the EPIC16A emulator. It is designed to offer powerful
capabilities while developing and debugging applications of the PIC microcontrollers
(Microchip Technology Inc.) in most general use. Integrated development environment
DPIC enables you quickly and easily develop applications for the PIC series 12C5xx,
16C5x and 16Cxx . All desirable tools are included in it: editor of source text, compiler
(assembler), disassembler and interface (operating program) to emulator EPIC16A
made by ASIX s.r.o.

The unique construction of the emulator does not use a common emulation chip
but a latest programmable logic devices (ASIC). Besides of all standard tasks, it allows
to perform many features, which are not usual or feasible with emulators of even much
higher price category:

l You can watch and modify all registers (file registers as well as special internal
registers, e.g. PC, STACK, PORT, TRIS, LATCH, OPTION, PRESCALER,
WREG, ...) at full speed with the exception of STACK modification in Run
mode.

l Extensive possibilities of break based on many various conditions, not only usual
breaks in code memory on an arbitrary location, but even breaks in data memory
with the following options: access, write to register and write the value with
respect to mask. Further, special breaks are available: timer overflow, trace buffer
overflow, watchdog overflow, stack overflow/underflow, break on external probe
of emulator (rising or falling edge can be selected).

l Remarkably flexible setting of clock frequency of the emulated processor ranging
20 kHz through 20 MHz by 40 Hz step with the help of internal frequency
synthesizer.

l Internal circuitry of emulator is separated from I/O pins, which allows to operate
with the power supply in the whole range of PIC microcontrollers (from 3V to
6V). That is why the user is not forced to use just 5V supply voltage only.

l Emulator has an additional stabilized 5V power source with 100 mA current
limitation to supply user application (peripherals of the PIC being emulated).

l Off-line mode: after exiting the operating program the emulator is capable of
continuous stand alone emulation (PC host computer is not necessary any more).

l A well-arranged mode indication with the help of LED varied in color for watching
the operation of emulator (even in off-line mode): orange
LED - power on / emulation chip successfully configured, red LED - Halted,
yellow LED - Break, green LED - Run / Step, blue LED - Sleep.

8 DPIC/EPIC - User�s guide

l If the emulator is in operation while the operating software is invoked, the
environment is set according to the situation which it was just before exiting.
Information needed for it are stored in the hardware of the emulator, not only in
the configuration file of PC host.

l Optional enable/disable of processor reset caused by setting -MCLR pin low or
by power supply voltage drop (when it goes below 2V). Even short reset is
detected.

l Flexible tracing - off, on or tracing only selected portions of program (e.g. you
can disable tracing of waiting loops and trace only the main program). Trace
buffer capacity is 32 KB (8192 instructions).

l Eight probes for optional tracing of external signals synchronously to reading of
I/O pins of emulated processor.

l The CLKOUT output has a proper frequency and phase according to selected
oscillator type of emulated processor.

l Correct emulation of overflow of watchdog, TMR0 (RTCC) timers and write to
internal EEPROM (PIC16C8x) even in Halted/Step mode

l Flexibility of emulator circuitry allows software upgrades (e.g. via Internet) of
the emulator hardware and individual modifications with respect to individual
user�s needs.

The integrated environment contains a demo version of simulation program for
PICs of all families supported by emulator as well. A full version (without restrictions)
is available independently on the emulator.

Basic characteristics of the assembler:

l It is a line-oriented compiler. Thus, only one instruction is allowed in a line.

l It is allowed to work with the symbols on higher level of abstraction then other
similar products are used to do. It allows to define and use more complicated
data types (byte, bit, constant, byte array, bit array, table).

l Conditional compilation, Macroinstructions, 8 nesting levels

l Format of output binary code: INHX-16 and INHX8M

l Compatibility with the compiler by Microchip

It is recommended to run DPIC on PC/AT or compatible computer with 486
processor, 16 MB RAM and about 4 MB free space on hard disk. The minimal PC
configurations which allows to run DPIC means 386SX processor and 2 MB RAM.

EPIC16A Hardware Description 9

2. EPIC16A Emulator - HW Description

Characteristic:
Height: 42 mm (1.65") x Width: 168 mm (6.6") x Depth: 140 mm (5.5")
Ambient temperature while operating: +15 - +30 °C (+59 - +86 °F)
Storage temerature range: -40 - +70 °C (-40 - +158 °F)
Operating relative humidity: 90 % max

2.1 Front Panel

2
1

34
33

10
9

2
1

External probe connector
Emulation connector

 LED Sleep (blue)
 LED Stop (red)
 LED Break (yellow)
 LED Run (green)
 LED Power/configured (dark orange)
 Power switch

ON OFF

LED Power/configured (dark orange). Blinking / continuous lighting means not
configured / configured emulation chip.

2.1.1 Emulation Connector

1 - +5 V / 100 mA 10 - OSC1/CLKIN 19 - PORTA1 28 - PORTC0
2 - +5 V / 100 mA 11 - not connected 20 - PORTC4 29 - PORTB2
3 - GND 12 - OSC2/CLKOUT 21 - PORTA2 30 - PORTB7
4 - GND 13 - GND 22 - PORTC3 31 - PORTB3
5 - not connected 14 - PORTC7 23 - PORTA3 32 - PORTB6
6 - not connected 15 - not connected 24 - PORTC2 33 - PORTB4
7 - TOCKI (RTCC) 16 - PORTC6 25 - PORTB0 34 - PORTB5
8 - -MCLR 17 - PORTA0 26 - PORTC
9 - VDD 18 - PORTC5 27 - PORTB1

10 DPIC/EPIC - User�s guide

13
 25

 1
14

Power connector

Connector to PC

2.1.2 Probe Connector

 1 - PROBE 6 6 - PROBE 3
 2 - PROBE 7 7 - PROBE 0
 3 - PROBE 4 8 - PROBE 1
 4 - PROBE 5 9 - GND

 5 - PROBE 2 10 - GND

2.1.3 Color Identification of Probes

PROBE 0- white PROBE 4 - green
PROBE 1- grey PROBE 5 - yellow
PROBE 2- violet PROBE 6 - orange
PROBE 3- blue PROBE 7 - red
GND - black

2.2 Rear Panel

2.2.1 PC to EPIC16A Connection

Emulator provides communication via Canon 25 female connector to PC host
parallel port. A 6-foot male-to-male data cable with 25-pin connectors is supplied
with the emulator. All lines are wired straight through. Maximal length of data cable is
2m (6.5 foot).

1 - STROBE 6 - DATA 4 11 - BUSY 16 - INIT 21 - GND
2 - DATA 0 7 - DATA 5 12 - PE 17 - SLCTIN 22 - GND
3 - DATA 1 8 - DATA 6 13 - SLCT 18 - GND 23 - GND
4 - DATA 2 9 - DATA 7 14 - AUTOLF 19 - GND 24 - GND
5 - DATA 3 10 - ACK 15 - ERR 20 - GND 25 - GND

EPIC16A Hardware Description 11

8 7 6

5 4 3

2

Caution: The cable must not be replaced by one with the connection other then
specified above, e.g. by a cross-wired Laplink cable for LPT!

2.2.2 Power Supply Connector

Power supply connector type: AMP Shielded Miniature Circular DIN Plug 8 pin
P/N 749179-1. Power supply 5 V +- 5 % / 1 A, 12 V +- 5 % / 500 mA. Computer
Products SCL25-7618 power supply is recommended.

 1 - +5 V 5 - GND

 2 - +5 V 6 - GND

 3 - +5 V 7 - GND

 4 - +12 V 8 - GND

Caution: Pay attention to proper power connection, otherwise the emulator can
be seriously damaged!

Rear view to the power supply connector of the emulator:

1

12 DPIC/EPIC - User�s Guide

Main menu State indicator

Active window

Pasive window

Context help Project name Free memory

3. Integrated Development Environment

Integrated development environment (IDE) includes several basic modules: text
editor, tools for memory editing of the emulated device, system for events entry and
editing, project manager, compiler and drivers for all types of supported PICs. All
functions of the environment are available via the basic menu. The most frequently
used commands have Borland-like hot keys assigned to them. Mouse control is fully
supported.

3.1 Screen Layout
Basic screen of the environment displays following information: On the top there

is a main menu bar where the current state of the emulator is also displayed. The upper
bar consists of the active help for three most important hot keys, name of the program
loaded into emulation memory and free PC host memory. The rest of the screen area is
intended for placing windows for program tools and elements.

Integrated Development Environment and Debugger DPIC 13

3.1.1 Program Elements of an Integrated Environment

Program objects of integrated environment mean basic types of display information
about the state of the system:

l Menu - object for invoking selected commands, events and so on

l Watch view - object for enclosing a list on the screen

l Dialog box - window which allows setting of values, system settings and so on.
Unlike list window, only one dialog box can be active (able to accept commands)
at a time. Thus, all other objects on the screen are inactive until the dialog box is
closed.

l Scroll bar - list window is usually provided with horizontal and vertical bars.
They are mouse-sensitive and allow scrolling of the text in the window. They are
used especially if the number of columns or lines exceeds the area reserved to the
window.

l Button - (group of) buttons are used for setting and selections like Yes/No, and
for current command confirmation or cancellation. They should be without check
(an event is invoked just after a single press). Mouse or pressing the key assigned
to the highlighted letter can be used). Buttons with check can allow multiple or
exclusive choices. Multiple choice buttons can be set on or off independently on
each other. Exclusive buttons can only be in a group, and only one of them can be
set active in the group at a time.

l Line editor - an object which allows to enter character strings or constant numbers.
Editors are provided with history. It is a list containing strings of previous entries
of the command. In many cases editors have even a list of available names, e.g.
names of defined variables. These lists are usually updated after a successful
compilation of source text.

l List box - an object for a group of commands or selection options. You can use a
mouse or the Enter key to make a choice.

3.1.2 Menu

You can use a keyboard or a mouse to access all menu items. Pressing the F10
key makes the menu bar active. Use the arrow keys to select desirable menu item or
press the key corresponding to highlighted letter of the item. Besides of this, main
menu items and some commands have hot keys assigned to them as a shortcut for
the selection.

F10 = Menu
Alt-Space Alt-F Alt-W Alt-E Alt-V Alt-R Alt-D Alt-O

14 DPIC/EPIC - User�s Guide

Close box Zoom boxWindow name

Line and column indicator Window resize icon

Scroll
bars

All main menu bar hot keys are handled in the uniform way using a highlighted
letter and the Alt key (e.g. Alt-F for File, Alt-D for Debug). Selection of a menu command
is done by selecting the menu item with the mouse cursor and clicking the left mouse
button.

3.1.3 Watch Window

Watch windows of lists, editors etc. can be active (selected) or inactive. The
active window is the one you are currently working in. This has a double-lined border
around it, all inactive windows have single-lined ones.

The active window accepts commands from the keyboard and menu commands.
Inactive windows ignore commands. Only one window can be active at a time.

There are several ways to make a window active: �Window→Next� (F6),
�Window→Previous� (Shift-F6) commands or clicking the mouse anywhere in the
window.

Windows have the following attributes:

l Window name - the name is centered at the top border line. In case of a text
editor it means name of the file to be edited, otherwise it means the type of the list
in the window.

l Scroll bar - allows to scroll the text horizontally or vertically in the window.

l Close box - in the upper left corner of the border. Click it to close and remove the
window from the screen. Another way for this is the �Window→Close� command
(Alt-F3) from the main menu.

l Window resize icon - in the lower right corner of the border. Drag it by the
mouse to make the window larger or smaller. Another way for this is the
�Window→Resize� command (Ctrl-F5) from the main menu.

Integrated Development Environment and Debugger DPIC 15

l Window zoom box - in the upper right corner of the border. Click either to enlarge
to maximal size or shrink back the window. Another way for this is the
�Window→Zoom� command (F5) from the main menu.

l Line and column indicator - in the lower left corner of the border. In case of text
editor it displays current cursor position. The format is [line:column].

3.1.3.1 Moving a Window Around the Screen

Windows can be moved, enlarged or reduced on the screen.

a) Moving a window by the mouse - move the mouse pointer to border of the active
window except of the Window resize icon, Close box and Zoom box. Drag the
mouse cursor where you want to have the window while pressing the left mouse
button, and then release it.

b) Moving a window from keyboard - use the �Window→Move� command and
arrow keys to move the window where you want to have it, then press Enter.

c) Resize window by mouse - move the mouse pointer to Window resize icon, press
the left mouse button and drag then. The lower left corner follows the pointer
while the position of the rest of the window leaves still unchanged. Fix the desired
window size by releasing the mouse button.

d) Resize window from keyboard - the �Window→Resize� command switches the
window to the size edit mode. Set the window size by pressing the Shift key and
arrow keys. Fix the desired window size by the Enter key.

e) Zoom a window by the mouse - Enlarge to maximal size or shrink back the
window by clicking the Zoom box.

f) Zoom a window from keyboard - Enlarge to maximal size or shrink back the
window by pressing F5 hot key or by �Window→Zoom� command from the
main menu.

3.1.3.2 Moving Through a Text in a Window

a) Moving through a text by the mouse - you can scroll the text in the window
using scroll bars. Click the arrow at either end of the horizontal or vertical bar to
scroll one line or column at a time. Similarly, you can click the area between
either arrow and the scroll box to scroll a page at a time. Finally, you can drag the
scroll box to any spot on the bar to quickly move to a spot in the window relative
to the position of the scroll box.

b) Moving through a text from keyboard - move the cursor to a window edge
where you want to scroll the text. To do it, press the appropriate arrow key.

16 DPIC/EPIC - User�s Guide

Vertical scroll bar

Horizontal scroll bar

Bar pointer

One-line scroll
box

3.1.4 Dialog Box

A dialog box is a convenient way to view and set multiple options of integrated
environment. Only one window of this type may be open on the screen at a time.
Activity of other objects on the screen is suspended until the dialog box is closed.
Onscreen controls (especially buttons and input boxes) can be inside of a dialog box.
Only one of these objects is active at a time. If you want to switch to another one,
press the Tab key and repeat it until the desired object is set active, or click to the
desired object. Finally, you can use a hot key assigned to the object, which is the Alt
key and the key corresponding to highlighted letter of the object. See chapters Buttons,
Line editors, List boxes, History list and Offer box to learn about editing and setting of
object parameters.

Dialog box has a mouse sensitive close icon to leave the setting unchanged. Buttons
without check are intended for confirmation or cancelling changes just made in dialog
box and closing the window then. One of the buttons of the dialog box is always
active, which enables to invoke it from any object of the dialog box by pressing Enter.

3.1.5 Scroll Bar

Scroll bar is a control object to support especially Watch windows. This object
has three mouse sensitive boxes:

a) One-line scroll box - �press� one of these icons (depending on desired direction)
at the end of scroll bar to scroll one line

b) Bar pointer - scroll bar pointer can be moved between one-line scroll boxes.
Move the mouse pointer to the scroll bar pointer, press the left mouse button and
drag the mouse. Scroll bar pointer follows the mouse pointer. Release the mouse
button to perform the appropriate scrolling.

c) Area on the scroll bar - click the mouse at this area between the bar pointer and
one-line scroll boxes to scroll a page forward/backward.

Integrated Development Environment and Debugger DPIC 17

3.1.6 Buttons

There are three types of buttons:

a) Button without check - this is an object for confirmation or cancelling selections.
It can be handled by left mouse button or from keyboard by pressing the key
corresponding the highlighted letter of the command name.

b) Multiple choice buttons - these buttons are usually grouped by sets into a single
object. They are named by names with a highlighted letters which correspond to
hot keys (Alt and the appropriate keys). Use arrow keys to move around them.
To set the selected button on/off hit the spacebar or click a left mouse button with
mouse pointer on the icon of the button ([] or [X]).

c) Exclusive (radio) buttons - these buttons are also grouped, but unlike of multiple
choice buttons only one of them can be set active in the group at a time. Handling
radio buttons is similar to handling multiple choice ones.

Radio
buttons

Multiple
choice
buttons

Line
editor

Buttons without check

3.1.7 Line Editors

Line editors are intended for numeric or text entry. They usually have a history
object and a list of available symbols.

You can edit the text by standard editing keys:

l arrow keys - cursor moving
l Ins - Insert/Overwrite switching
l Del - character deleting
l Home - moves the cursor to the beginning of the text
l End - moves the cursor to the end of the text

18 DPIC/EPIC - User�s Guide

Line
editor History object

Object of available symbols

To invoke subsidiary program objects the following keys can be used:

l Down arrow - to invoke the history

l Ctrl-Enter - to invoke the list of available symbols

Subsidiary program elements are lists with the same way of handling as it was
described in Chapters 3.1.8. and 3.1.9.

A history object contains strings of previous entries. You can easily and quickly
reinvoke text strings.

To make the entry easier, a list of available symbols contains all known names
and symbols defined after successful compilation.

3.1.8 List Boxes

List boxes are objects containing list of names and symbols and handle them like
a database. Select an item by the cursor and confirm the selection by Enter, or by
mouse pointer and left mouse button. If there is more items than it is possible to display
in the window, the window has an additional scroll bar to browse all items of the list.

Integrated Development Environment and Debugger DPIC 19

3.1.9 Subsidiary Program Elements

These are intended for user-friendly entry of names, symbols and mathematical
expressions. The integrated environment offers the following subsidiary elements:

l History [↓] - this object is always assigned to a line editor. On a dialog window
area there is an icon dedicated to it. The icon can be used only if the appropriate
editor is invoked. After pushing the down arrow key, the history icon displays the
list of previously entered text strings. After pressing Enter the selected string is
imported to the editor and the history window is closed. To close the window
without importing any string, press the Esc key.

l Available symbols [√] - this object is a list similar to the history list. The managing
and consequences are also the same. Unlike the history list this list is filled after
successful compilation. Available symbols mean names which can be evaluated
in the expression. After pressing Ctrl-Enter the list of available symbols is
displayed.

 3.2 Main Menu
Main menu of the integrated environment is represented by the menu bar on the

top of the screen. The main menu consists of ≡, File, Window, Edit, Views, Run,
Debug and Options.

3.2.1 Menu ≡≡≡≡≡

The command contains supporting tools and
information to help developing of application:

l Ascii - displays an extended table of ASCII characters
and their numeric values.

l Calculator - a calculator with fixed decimal point,
basic arithmetic operations included numeration system
conversions.

l Videostop - a simple game to recover from total
exhausting

l Information - displaying of basic information
concerning version of the integrated environment,
compiler and emulator.

l About - displaying names and information about
authors

20 DPIC/EPIC - User�s Guide

3.2.2 File

The File command offers commands for managing
files, projects, directories and so on. These commands
can be separated into groups as follows:

The File group:

l New File - opens a new file for editing

l Open File (F3) - opens an existing file or create a
new source text file

l Save File (F2) - saves any object on the screen (text
file or contents of any program tool to edit memory
of emulated processor).

l Save as - to save source text under a different name.

The Project group:

This group is intended for project managing. The
project manager allows to work simultaneously with more
projects. It lets store settings of the current project if the
work is interrupted. After reopening this project the
environment is set according to the project definition file.

l New Project - allows to open a new project. The
environment is set by default in this case.

l Open Project (Shift-F3) - opening of the existing
file

l Save Project (Shift-F2) - saves the project setting
to the project definition file

l Close Project (Ctrl-F3) - stops working on current
project

l Save Project as - saves the project setting under a
different name

The Input/Output group:

l Load Hex - loads the hex file into emulation
memory. The input format is Intel HEX-16.

l Save Hex - writes the contents of the emulation
memory to the file. The output format is Intel
HEX-16.

Integrated Development Environment and Debugger DPIC 21

Other commands:

l Change Dir - change of current directory

l DOS Shell - invoking the DOS command line.
Because of the PC conventional memory is highly
utilized by the integrated environment, it is usually
not possible to run another program from DOS Shell.

l Exit (Alt-X) - stops the DPIC program and exits to
DOS.

3.2.3 Window

The Window menu contains management commands
for windows operating with program tools for emulation
memory and source text editing:

l Next (F6) - switches from the active window to
another one. The active window is pointed up with
double-lined border.

l Previous (Shift-F6) - switches from the active
window to previous one.

l Zoom (F5) - either enlarging to maximal size or
shrinking back the window.

l Close (Alt-F3) - closes the active window.

l Resize (Ctrl-F5) - switching the window into the
enlarging/reducing mode, or moving the window
around the screen.

l Tile - placement of the windows on the screen in a
way that all open windows are visible. This mode
is convenient if only a few windows are open.

l Cascade - placement of the windows stacked like
cards in a card index.

22 DPIC/EPIC - User�s Guide

3.2.4 Edit

The Edit menu lets you manage editing commands
and tools:

l Undo - this command takes back the last editing
command, e.g. deleting a word or a line.

l Cut (Shift-Del) - this command removes the selected
block from your text and places it in the clipboard.

l Copy (Ctrl-Ins) - this command copies the selected
block in the clipboard.

l Paste (Shift-Ins) - this command inserts text from
the clipboard into the current window

l Show clipboard - this command displays the
clipboard window

l Clear (Ctrl-Del) - this command deletes the selected
block but does not put it into the clipboard

l Find - lets you search for a text string

l Replace - lets you search for a text and replace it
by another one

l Search again - repeating the last �Find� command

l Mark - marking the text at a cursor position intended
for future return to this location using the �Goto
Mark� command

l Goto Mark - returns to the line previously marked
using the �Mark� command

3.2.5 Views

The views menu lets you manage commands and
tools editing the emulation memory:

l Watch - display and editing program variables with
respect to user choice

l Data Memory (Alt-M) - display data memory

l Breaks - displays the events database. Events
include all types of breaks (points where program
stops) and events for conditional tracing.

Integrated Development Environment and Debugger DPIC 23

l Stack (Alt-S) - displays the stack and highlights the
stack pointer position

l Program (Alt-P) - displays the program memory

l Trace (Alt-T) - displays the trace buffer

l Disassembler - displays the program memory
disassembled to instruction set mnemonics

l Errors & Messages (Alt-A) - displays a window
for error and message created by the compiler

l Clear Error Reference (Alt-C) - unhihglighting the
line where an error was found in the source text

3.2.6 Run

This menu contains commands for processing the
source text by the compiler and various types of running
an application:

l Compile (Alt-F9) - compilation of the application
source text

l Run (Ctrl-F9) - running the program in emulation
memory. Running is not inhibited even after errors
was found and compilation was unsuccessful. In this
case, the last successfully compiled program or
random code is used.

l Goto (F4) - this command runs the program to the
line where the cursor is in the source text

l Emulator reset (Ctrl-F2) - resets the emulator, i.e.
emulated processor is set in accordance to reset
specification

l Step Over (F8) - this command executes the next
statement (single instruction, subroutine or a macro).
It means stepping over the program without
branching off into other subroutines and macros
which are execute at full speed.

l Trace Into (F7) - stepping the program statement
by statement

24 DPIC/EPIC - User�s Guide

l Line Asm - line assembler (compiler). It is usually
used for small correction (patch) in the program
memory. Caution: in this case the program memory
is modified but the source text leaves intact.
Therefore, the source text does not correspond to
the code memory any more.

l Make instruction - this command lets you make an
instruction out of sequence, i.e. independently on
the real contents of the program memory

l Animate - sets the emulator into the animation mode.
Then, the application program goes step by step,
while the entire data memory as well as other internal
processor registers are completely read after each
step.

3.2.7 Debug

The Debug menu controls all the features of the
debugger. You can specify and modify internal processor
registers that are not directly accessible by the program:

l New Stack - modifies the stack

l New SP - modifies the stack pointer

l New PC - modifies the program counter

l Add Watch - adds an item into the watch window

l Toggle Break (Ctrl-F8) - sets a simple address break
(breakpoint on selected address in the program
memory)

l Add Break (Alt-B) - sets another break or event
using the event editor

l Global Events (Alt-G) - sets or modifies global
events (specifications of events for breaks)

3.2.8 Option

The Option menu includes all user settings
concerning the environment as well as the emulator:

l Emulator Setup - setting of the emulator
parameters, e.g. clock frequency, processor type and
so on

Integrated Development Environment and Debugger DPIC 25

l Compiler - setting of the compiler parameters,
output listing format and output file format of the
compiler

l Chip Options - lets set parameters of the emulated
processor. These should be an oscillator mode, start-
up timer enabled/disabled, watchdog enabled/
disabled and so on. This setting depends on the
processor type and family. This setting corresponds
largely to the configuration word of the processor
(configuration fuse)

l Data Memory Setup - allows to set parameters for
data memory displaying

l Program Memory Setup - allows to set parameters
for program memory displaying

l Trace Memory Setup - allows to set parameters
for trace buffer displaying

l Environment - user setting of the environment

l Colors - setting colors of the objects and displaying
on the screen

l Redump Emul - after this command the complete
emulation memory and state of the emulator is read

3.3 Source Text, Project and Object
Development of an application using the integrated environment can be

accomplished by a few ways. For simple tests you can directly use the compiled source
text of the program. In more complicated cases, or for applications with fixed pin
assignment (e.g. because of PCB layout needs) and so on, it is recommended to take
an opportunity to construct a project.

3.3.1 Arrangement of Directories

When developing an application, you should remember the system of storing
information about the application program on the hard disk of the computer.
The integrated environment works with two important directories which can be called
an installation directory and a work one. The installation directory means the directory

26 DPIC/EPIC - User�s Guide

where programs necessary for running the environment reside. This directory can be
used as a work one, it is true, but it is not recommended because of security of the
data. Another reason for it is, if the environment is installed on the computer network,
which is used to have the read-only attribute set on all installation directories.
The integrated environment use the installation directory for read only. Work directory
means any current directory, where it is allowed to read and write data. In this directory
the environment always creates a standard configuration project, i.e. a file named
DPIC.PRJ and a color palette file DPIC.CFG. The standard project file contains
information about the setting of the environment of the previous execution without
opening a user project. The color palette file contains color codes for all user projects
in this directory.

3.3.2 Source Text and Project

Source text is created using the built-in text editor. The file can be open by the
File command in the main menu. If you write a text without opening a project, the file
can have any name with respect to MS-DOS convention. If the project is open, the
name of the source text file must match the name of the project. After closing the
project, a configuration file �name.PRJ� is created. The main project file containing
the source text is defined by the name of the project as well as the object file, if this
exists.

3.3.3 Object File

The compiler creates the object file after successful finishing the compilation.
Besides of instruction operation codes it contains some additional information, e.g.
information about the mapping the user variables in data memory or about locations of
labels in program memory. If the project is open, the project file has the same name as
the source text file (and of course the project).

3.3.4 Project

Because of the environment allows to have more text files open on the desktop
not only with source but even with any other text files, the priority of the compilation
must be defined. It is done as follows: if the project is open, compilation of the main
project file is always called independently on activity of any source text windows.
If no project is open, the source text of current window is compiled. For managing
projects, the File commands from the main menu can be used.

Integrated Development Environment and Debugger DPIC 27

3.4 Source Text Editor

Source text editor allows to edit a text up to 64 KByte of size. If the size of your
source text exceeds this limit (e.g. if you use verbose comments), you can use the
Include directive to avoid this situation. This directive lets include multiple files into
the source text for compilation purpose. Another reason for separating extensive source
texts into more files is a clear arrangement.

3.4.1 Source Text Editing

l Cursor movement - the cursor moves around the active window area using the
arrow keys (by characters) the or Ctrl and right/left arrow key (by words). Clicking
the left mouse button moves the cursor to the mouse pointer position.

l Marking a block - the block is marked from keyboard by Ctrl-KB (beginning of
the block) and Ctrl-KK (end of the block), or by dragging a mouse while the left
mouse button is pressed.

l Unmarking a block - the block is unmarked by moving cursor after the block is
marked, or by Ctrl-H keys.

l Move or Copy block - text block can be moved or copied via a hidden temporary
text buffer called a clipboard. Mark the selected block of text and copy it into the
clipboard using hot keys or menu commands. Use �Edit→Cut� (Shift-Del) to
move or �Edit→Copy� (Ctrl-Ins) to copy. Then move the cursor to the new
position and insert the block to a text using �Edit→Paste� (Shift-Ins) command.

l Deleting a text or a block - to delete a character, use the Del key (deletes a
character at a cursor position) or Backspace (deletes the character to the left of
the cursor). To delete the entire marked block, use �Edit→Clear� (Ctrl-Del)
command.

l To recover the last deleted text back to the previous form, use the �Edit→Undo�
command.

l Displaying of the clipboard - to display the clipboard, use the �Edit→Show
Clipboard� command.

l Searching the string in text - the editor allows to search of text strings with or
without case sensitivity or search for whole words only using the �Edit→Find�
command.

l Replace text - the �Edit→Replace� command searches for a string and replaces
it with another string with or without case sensitivity or replaces whole words
only, the first occurrence or all occurrences in the text. You can also choose
prompting or no prompting option.

28 DPIC/EPIC - User�s Guide

3.4.2 Additional Editor Utilities

l Automatic indentation of text - the autoindent command provides for automatic
indentation of text which affects positioning of the cursor when Enter is executed.
If it is set (on), the cursor moves to the position according to previous line,
otherwise it goes to the first column.

l Syntax highlight - this option is global for all objects (including editor) of the
integrated environment according to user�s setting. This option sets displaying of
keywords different in colors from another parts of text.

l Display the program counter - the emulator executes the emulation according to
the program. The program counter varies during emulation with respect to it. The
editor shows the value of the program counter all the time using the highlighted
line of current instruction in source text.

l Display breakpoints and traces - these options allow to set and display the address
break and display a trace point. The trace point is displayed by highlighted character
in the first column in the line. If space is the first character of that line, the character
is displayed. The breakpoint is displayed by the highlighted line.

l Fixed references to errors and breakpoints - this is a subsidiary feature of the
editor. It allows to edit source text which contains marks where the compiler
found errors, and, after deleting or inserting a line the editor accepts the new
relative positions of error marks. The same feature is used for breakpoints and
points of conditional tracing. See chapter 3.19. in detail.

3.5 Program / Data Memory Editor
The program and data memory editors are intended for direct editing of memory

area of the emulated processor. These are matrix-oriented views. The first column
always means the address of the first byte or word in the line. Values of the subsequent
memory cells follow. For example: 08: 12 33 AB CD. This means value 12 at location
08, 33 at location 09 and so on.

Data memory editor Program memory editor

Integrated Development Environment and Debugger DPIC 29

Addresses are listed always in hexadecimal, while values can be displayed in any
of five formats as follows: hexadecimal, decimal, binary, octal and ASCII characters.
Further, you can select number of columns of the list (1 through 6) and set the size of
fixed-length format. All these selections can be done by the �Option→Data Memory
Setup� or �Option→Program Memory Setup�.

l moving the cursor - editors display two cursors. The former is identical to cursor
of the text editor and it is allowed to move it around the editor window using
arrow keys. The latter (in the form of a block) appears only where the memory
value is allowed to edit. To move the cursor, you can use the left mouse button as
well.

l moving the block cursor - you can move the block cursor to the next or previous
memory item. If the cursor is not displayed, it moves to next or previous item
relative to the standard cursor. Tab or Ctrl-Right arrow keys moves the block
cursor to the next item, Ctrl-Left arrow moves it to the previous one. The first
location of the edited memory can be selected by Ctrl-PgUp, the last one by
Ctrl-PgDn. The first item in the line can be edited by Home, the last one by the
End key.

l commands for breakpoints and trace points - these commands allow to enter
and display the Address Break (the point of break on the address) and display the
trace point. The trace point is displayed by highlighted character in the first column
in the line. The breakpoint is displayed by a highlighted line.

l editing of a memory location and an automatic shift - the editor allows to edit
the selected item using only valid characters defined for the current radix.
For example, only characters 0 and 1 are valid for binary radix and 0 through 9 in
decimal radix. An automatic cursor shift means that after editing the last character
of the item the cursor goes automatically to the next item.

3.6 Disassembler
The disassembler is intended for evaluation and displaying the contents of the

program memory including the instruction mnemonics. The list is arranged into two
columns. The former displays the hex memory address, the latter contains the instruction
corresponding to the code on this address.

Using the disassembler:

l cursor moving - moving the cursor in the disassembler window by the mouse or
by the arrow keys is the same as for source text or memory editing.

l editing and compilation - you can edit the program memory using instruction
mnemonics with the help of the disassembler. When editing, move the cursor to
the desired position and execute Enter. Then the dialog box of a line compiler is

30 DPIC/EPIC - User�s Guide

open. Enter an address (or leave the address unchanged) and write the instruction
in the symbolic mnemonics. Press the OK button in the dialog window. Then, if
the entry is able to be evaluated and compiled, the program memory is modified
at this location. If there is an error, the message in a dialog box appears and the
memory is not changed.

l displaying of breakpoints and trace points - the breakpoints are displayed by
highlighted line the trace points are marked by characters.

l displaying of the program counter - in the course of emulating the microcontroller
goes through instructions and the value of program counter changes. The
disassembler displays this value using the highlighted line with respect to the
current location of the program counter.

l Highlighted syntax - this option can be set globally for all objects of the integrated
environment according to user�s setting. This option sets displaying of keywords
different in colors from another parts of text.

Disassembler window

Line editor window

Enter key

3.7 Trace buffer
Wile debugging, the information about the program flow is stored into the trace

buffer. It is possible to store either all program steps or selected program parts only
(conditional tracing). The trace buffer list is arranged by the addresses and is listed
line by line, the last command at the bottom. The output is user-formattable.

Integrated Development Environment and Debugger DPIC 31

3.7.1 Trace Memory Arrangement

The trace memory word is 32 bits wide. As for information storing, this array is
separated in three parts. The initial sixteen bits form an area where the program counter
and some subsidiary information about setting trace on/off are stored. The next eight
bits of the memory word is intended for ALU result storing. Meaning of the last eight
bits is user-selectable. Either values transferred via the internal processor data bus or
values sampled on the external logic probe can be stored there. The trace buffer lists
these data. Lines are separated into columns as follows:

l Depth - depth pointer of the trace buffer. It is a number signed with a minus sign
ranging from -1 to -4096, which means the history of stored data.

l Probes - an eight-column array for displaying logical signal samples on the external
probe. If the tracing of the internal data bus is set, the columns display the data.
The columns can be named by user. In case of internal data bus tracing, the
default names Bs7 .. Bs0 are used. Names are entered using the trace buffer list.
See chapter 3.17.

l PC - the program counter value for current history of the line is displayed in this
column

l ALU - the column displays results of the arithmetic/logic unit for current history,
i.e. for the currently executed instruction

l Disassembler - this column displays the currently executed instruction which is
reconstructed from the program counter value and the program code.

Moving the cursor in the trace listing can be controlled using arrow keys or the
mouse. Move the cursor to the beginning of the line by the Home key and to the end of
the line by the End key. To go to next or previous page of listing use the PgDn or PgUp
keys. The Ctrl-PgDn or Ctrl-PgUp keys go to the beginning (to the youngest data) or
top (to the oldest data) of the trace buffer.

32 DPIC/EPIC - User�s Guide

3.7.2 Setting and Selections

The user can format the trace buffer listing by �Option→Trace Memory Setup�
from the main menu. Selections like display ([X]) or not display ([]) for each columns
Probes, ALU and Disassembler are available. For eight columns of Probes you can
choose a three-character name for each column, select separate column displaying and
numeric or semigraphic displaying.

3.8 Watch (displaying of user-defined variables)

Watch (editor of user-defined variables) is intended for formatting of processor
register lists on the screen. The editor allows easy register modification and displaying
and modification even registers not accessible in the processor data memory area.
Editor of user-defined outputs lets display up to 256 items. More items would not spell
a clear view. In spite of this, to allow watching more variables, you can open more
editors at a time. The number of them is not limited at all. The only restriction is a
memory capacity of the computer.

l cursor moving - selected item highlighting and a point at the first column mean
the cursor in editor of lists. To move it around the window, use arrow keys or the
mouse. Further, use the PgDn and PgUp keys for paging or Ctrl-PgUp and
Ctrl-PgDn for moving the cursor to the first / last record in the listing.

l listing format - every displayed variable is listed according to the previously
defined format, which is partly fixed and partly user-specific. The implicit listing
has to do with the first and second items. The first one refers to the memory or
register type and can have Virtual, Data or Address values. Virtual means a register
generally not accessible in the data memory, e.g. the WREG accumulator (this
register is intentionally named WREG to avoid collision with the destination
register assignment (W or F) for write instructions). The Data mean registers or
variables in the accessible area of the data memory. The second column contains
a variable type. One of four designations can appear there:

n B (byte) - eight-bit variable, register

n b (bit) - a single bit

n BA (byte array) - array of bytes

n bA (bit array) - array of bits

For details of variable types, see Chapter 4.4.2 concerning extended data types.
The last term is Address, which means the address where the variable is mapped in the
memory. Another item in the line is a variable or register name. In case that the register
address is displayed in the line, the @ character precedes the register name. The last

Integrated Development Environment and Debugger DPIC 33

item is a register (address) value in the processor emulation memory. Four radixes
(hexadecimal, decimal, octal or binary) and ASCII character representation are available
for displaying values. The address is always in hexadecimal. In case of bit variables,
the comma character and an order of the bit (0 through 7) follows the address. In case
of bit array, bits are numbered in ascending order of binary numbers as well as byte
addresses.

3.8.1 Formatting and Editing a Value

You can add a variable to the listing by the �Debug→Add Watch� command from
the main menu or by pressing the Ins key. Response of the editor depends on the
cursor position. If the cursor is at the end of the list, the variable is appended. If the
cursor is at an existing item, the new item is inserted there. Editing is invoked by
selection the item by the cursor and the Enter key.

Memory type

Variable type

Variable name

Value

Adding a variable
Editing the value

34 DPIC/EPIC - User�s Guide

3.9 Displaying and Editing the Stack
The stack is displayed according to stored returning addresses and current stack

pointer value. You can edit returning addresses and the stack pointer value using
following commands:

l New Stack - invokes the stack editor

l New SP - invokes the stack pointer editor

These commands can be invoked from menu or by cursor and the Enter key.

Stack displaying

Stack editor

Stack pointer editor

3.9.1 Stack value editor

It is a simple line editor with an object for displaying of available symbols. This
view includes symbols of labels and constants found during compilation. A return
address can be entered using a symbol (label) or an expression which can be evaluated.

3.9.2 Stack Pointer Editor

The editor is intended for current stack pointer modification. The value is entered
as a number or using an expression which can be just evaluated.

Integrated Development Environment and Debugger DPIC 35

3.10 Displaying and editing of events
Generally events mean breakpoints (points of breaking the running program) and

trace points (points of tracing the program). The event editor allows to specify up to
256 different items specifying conditions for breaking or tracing an application program.
Breaks can be watched and modified using the break editor.

3.10.1 Displaying of Events

l positioning the cursor - the cursor is represented by a highlighting of the selected
item and by a point in the first column of listing. To move the cursor around the
window use arrow keys or the mouse. Further, use the PgDn and PgUp keys for
scrolling a page or Ctrl-PgUp and Ctrl-PgDn for moving the cursor to the first or
the last item.

l listing format - all displayed events are listed in a default format. The listing
contains a column for local enable/disable event activity, one for event allocation
list, and columns for event effect definition list, event name and event address
range.

l enable/disable event - event effect enable/disable is displayed as follows:

[] - the event is disabled

[x] - the event is locally enabled, but its activity is disabled globally,
i.e. the event is inactive

[X] - the event is enabled locally as well as globally, i.e. the event is
active

l event allocation - the column indicates a memory area where the event is allocated
by its definition. There are two kinds of the allocation:

n Code - stop-point on the address or in the specified address memory range

n Data - stop-point on the address or in the specified data memory range

l event type - the column indicates an event type. The types can be as follows:

a) for Code type allocation

m Address - breakpoint on the address or in the specific address memory
range (simple address break with a range selection option)

m Trace - trace point (program pass through the specified address range is
stored)

36 DPIC/EPIC - User�s Guide

 b) for Data type allocation

m Access - runing program is broken when the specified register or register in
the specified address range is accessed (the access means read or write of
any value).

m Write - runing program is broken when any value is written into the specific
register or registers of the specific address range

m Value - runing program is broken in case of write into the specific register
or registers of specific address range, if data to be written match the specific
value including a bit mask. The emulator lets specify one value and one
mask common for all events of this type. The mask and the value are
implemented as the bitwise logical AND operation, i.e. only the bits of the
value are significant, where the mask has ones. Other bits of the value are
ignored. For example, given: value 0xFF and mask 0x1 is specified, and
the Value break is set to the STATUS register. Then the break occurs when
the carry bit (C) is set to 1.

It is allowed to group event types for the specified allocation type, which is indicated
by the & character joining the events. The & character means event activity, e.g. an
event is active on the specified address as a breakpoint as well as a trace point (resulting
listing is �Code > Address & Trace�).

3.10.2 Editing of Events

An event editor is intended for entering and modifying of events. To add a new
event definition to the list, invoke the editor by selecting the �Debug→AddBreak�
(Alt-B) command from main menu or by pressing the Ins key in listing window. To edit

Break points

Trace points

Integrated Development Environment and Debugger DPIC 37

a previously defined event, press the Enter key in the event list window. If the cursor
is in the empty line, a new event is entered. If the cursor is on the existing event, this
event is modified by the editor.

3.11 Global Events
Global events are user selections to affect running a program and set various

emulator functions. The following options are available:

l External Breaks - enable to break a program by an external signal

m Enable - enable/disable of external break signal

n L-H edge

n H-L edge - selection of active signal edge

l Internal Breaks - a group of selections to invoke program break when any of the
following internal event of processor occurs:

m Wdt overflow - break on watchdog timer overflow

m Trace overflow - break on trace buffer overflow

m TMR0 overflow - break on timer TMR0 overflow (the original name of TMR0
is RTCC, for compatibility with current Microchip terminology TMR0 is used
in this manual).

m Stack overflow/underflow - break on stack overflow/underflow

38 DPIC/EPIC - User�s Guide

l Global Enable Breaks - global activation/deactivation of breakpoints and trace
points

m Code Breaks - enable/disable all breakpoints in program memory

m Data Breaks - enable/disable all breakpoints in data memory

m Trace All - enable/disable of conditional tracing (if the conditional tracing is
disabled, all instructions are traced)

l Value of Ram Breaks, Value Mask - editor of value and mask for breakpoints in
data memory with respect to the value and the mask (the value and the mask can
be specified in decimal or hexadecimal in C-language convention, i.e. 0x10 and
so on).

The OK button confirms setting, the Cancel button returns ignoring the changes.

3.12 Emulator Setting
Emulator Setup selections are intended for basic configuration of emulation chip

and corresponding setting of the integrated environment.

l Processors - setting of the type of emulated processor

l Clock Source - selection of clock signal source for emulated processor

m Internal - selects the internal clock source. The clock frequency is set via the
Clock parameter in this case.

m External - the clock signal for the emulation chip is obtained from the hardware
of the application via the CLKIN input of the processor.

Default: Internal

Integrated Development Environment and Debugger DPIC 39

Notes and recommendations:

1. Use the external clock source only if it is quite necessary for the application.
Because of a response time, the minimal frequency 25 kHz is allowed. A great
deal of internal operations of the emulation chip are synchronous with the clock
of the emulated processor, and needs more clock cycles.

2. If parameter Internal is set, the OSCI/CLKIN input of the emulated processor is
ignored, otherwise this pin serves as an input of active clock from the external
source of an application. In both cases, all crystals, ceramic resonators and RCs
are not accepted.

l MCLR Enable - enables reset of emulated processor from the -MCLR pin or
when power supply of emulated processor falls under approximately 2.5 V.

Default: Disabled

l Clock - setting the clock frequency of the internal clock source. The frequency
can be set from 25 kHz to 20 MHz or up to maximal clock frequency of the
emulated processor. The specific value is rounded to the nearest value that the
frequency generator is able to generate (the step is 40 Hz). Worst case difference
between the desired and rounded value for the minimal frequency 25 kHz is less
than 0.1%, and falls for higher frequencies proportionally and becomes quite
negligible in comparison with the accuracy of common crystal oscillator. The
specified value (not the rounded one) is always displayed.

l Background Debug Mode

m Enable - reading and editing the data memory of the emulator in real time, i.e.
in full operation of emulated processor

m Disable - reading and editing the data memory of the emulator in the Halted
mode only

Note: It is allowed to edit the microcontroller data memory in Background Debug
Mode. If you edit the memory, consider, that the emulation chip is much faster than the
editing, and the improper editing can abort the application program. In this mode an
automatic cyclic data memory reading is also in progress.

40 DPIC/EPIC - User�s Guide

l Hw Driver - pressing this button invokes a window with the description of the
emulator hardware driver. Features of the driver and restrictions of selected
processor emulation, if there are any, are included.

The OK button confirms the setting, the Cancel returns ignoring the changes.

3.13 Chip Options
This is a dialog for setting of special functions of emulated processors. Contents

of the dialog varies according to the selected processor. The most frequently used
items are:

l Watch dog

m WDT Enable - enable of the watchdog timer (WDT). Even in case that WDT
is enabled, it is possible to step the program without aborting the operation.

Default: Disabled

m Min, Typ, Max - three selections for WDT overflow time (useful for tolerance
analysis in programs using the watchdog). Minimal, typical and maximal values
can be set in accordance to the manufacturer�s databook specification. For
example, given: PIC16C5x values are 9, 18 and 30 ms.

Default: typical

l Clock Mode - setting of the OSC2/CLKOUT output mode

m Xtal - the CLKOUT pin outputs the frequency selected by the Clock option

m RC mode - the CLKOUT pin outputs the clock which has 1/4 the frequency of
processor clock according to the specified behavior of PICs in RC mode.

Default: Xtal

Integrated Development Environment and Debugger DPIC 41

l On Chip Reset

m Power Up Timer - enable/disable of Power Up Reset timer

m Osc Start Up Timer - enable/disable of the oscillator start-up timer

3.14 Setting of the Compiler Parameters
This setting influences a compiler run, especially user selections for output files

formatting.

l Output Options

m Output HEX File - output file generation in Intel Hex format

n INH-16 - output file is stored in Intel Hex-16 format.

n INH-8M - output file is stored in Intel Hex-8M format.

l Output Listing - enables generation of output file with a text compilation listing

m Include Symbols - listing does/does not contain the symbol table

m Device Map - listing does/does not contain a package of the specified processor

m Wrap Lines - the compiler wraps lines if the line length exceeds 80 characters

m Lines Per Page - setting the number of lines per page of listing

l Default Radix - selection of default radix format to interpret numbers without
radix specification.

m Decimal - all numbers without radix specification will be interpreted as decimal

m Hexadecimal - all numbers without radix specification will be interpreted as
hexadecimal

42 DPIC/EPIC - User�s Guide

l Case Sensitivity - the compiler will be case-sensitive for the following:

m Symbols - symbols, i.e. variable names, labels and so on

m Opcode - instruction mnemonics

m Directive - compiler directive

The OK button confirms the setting, Cancel ignores the changes of setting.

Notes:

a) Mnemonics of instruction as well as compiler directives for case sensitivity is
always written with the initial capital letter. Other letters are small. In case of
symbols, the case is identified according to the first occurrence in the source text.

b) Processor type which a compilation is processed for, is a parameter of the compiler
as well. This is parsed to the compiler from the emulator setup.

3.15 Setting of the Environment Parameters
Setting of the environment parameters is intended for user configuration of a screen

layout and system behavior in special cases. This setting is always stored with a project
(if it is open) or to the DPIC. PRJ file in work directory.

l Screen Size

m 25, 40/50 lines - setting of the number of lines on the screen

l Editor - setting parameters of the source text editor which the editor will be
invoked with

m Auto Indent - automatic indentation the beginning of the line according to the
previous line

m OverWrite - overwrite mode switch

m Load Object - if no project is open, the environment attempts to find the
compiled �object file� corresponding to the name of the open file and install it
into the emulation memory.

l Auto Save

m Source File - all source files are automatically saved after finishing a job in the
integrated environment.

m Desktop File - the environment setting including the layout of windows placed
on the screen will automatically be saved.

l Line Highlight - all editor types display groups of symbols and marks of source
file in specified colors. Additionally, it is a simple syntax checking of instruction
mnemonics, defined operands and so on.

Integrated Development Environment and Debugger DPIC 43

l Source File Extension - a three-letter extension for source text files

l Disassembler Extension - a three-letter extension for disassembled files

The OK button confirms the setting, Cancel ignores the changes of setting.

3.16 Setting of the Memory Listing Parameters
The �Option→Program Memory Setup� opens the Data Selector window, where

you can select a register bank and after pressing the Enter key open a window of the
data memory list editor. Similarly, set the listing of the program memory by the
�Option→Program Memory Setup�.

3.16.1 Data selector

The Data Selector window includes the Data Area list with a scroll bar and a
cursor. Use the cursor to select a bank (area) of data memory and press Enter to
invoke the editor for modifying the memory. The selection can be cancelled using the
Cancel button.

44 DPIC/EPIC - User�s Guide

3.16.2 Editor for the Setting of the Listing

You can format the listing using the following parameters:

l Digit(s) - a line editor for setting of the number of digits for a memory cell. Range
1 through 16 is valid. If the number exceeds the specific length, the number is
truncated from the left, i.e. from the most significant orders. If the number is
shorter, initial zeros are added to keep the specific format.

l Label - setting of the number of the decimal positions for address displaying.
Range 1 through 8 is valid. The address is displayed in hexadecimal, initial zeros
may precede.

l Columns - setting a number of columns of listing ranging 1 through 5

l Radix - setting of the radix to display memory. This radix is also used by the
listing editor.

The OK button confirms the setting, Cancel ignores the changes of setting.

3.17 Setting of the Trace Buffer Listing
l Probe selector

m Probe - lets enter a three-letter name for each displayed signal

m Selector - lets to select a probe displayed in listing

l Probe As.. - the switch of the probe display type allows to select semigraphic or
numeric displaying of the logical value

l Optional View - switches internal/external probes. The internal probes are always
connected to internal processor data bus in Q1 cycle. For the instructions using
File registers the input register value appears there. For literal operations, a literal
copy is there. The external probe leads to a connector. This allows to connect it

Integrated Development Environment and Debugger DPIC 45

to any application with the power supply of the same range as it is specified for
the emulated processor. The switching level is approximately 1.6 V. The probe
state is latched into the trace memory in late Q1 cycle, which is the moment when
processor pins are also read.

l Enable View - enables displaying of trace memory blocks in a window

m ALU - displaying of the ALU output

m Dasm - displaying of a disassembled program

m Optional - displaying of selected probe type, i.e. either external or internal,
according to the Option and View setting.

The OK button confirms the setting, Cancel ignores the changes of setting.

3.18 Coloring the Environment
This selection allows to set colors and other parameters of objects on the screen.

l Group - allows to select main object groups

l Item - set for selection a subset of objects from the Group set

l Foreground - text color setting for specific object

l Background - background color setting for specific object

m Blink - setting of the blink attribute for text of specific object

l Desktop Pattern - setting of the pattern of the work area on the screen

Note: Desktop pattern allows to select a character displayed on the work area.
After selecting this option in dialog window, use the down arrow key to open
a window with extended ASCII chart. Select desired character and press Enter
then. After closing the dialog window for color setting the screen is filled by
these characters to make a field.

46 DPIC/EPIC - User�s Guide

3.19 Accessory Elements on the Screen
Work area on the screen outside a menu has also accessory objects of displaying,

which specify integrated environment and emulation system.

3.19.1 Status

Status is located on the top bar together with the main menu. It displays an emulator
condition, program counter value (if defined) and emulated processor type. Emulator
conditions can be as follows:

l Undefined - undefined condition during environment initialization, when a contact
to emulator is not established yet, or if emulator sent undefined data.

l Error - this condition comes on if an error in communication with the emulator is
detected or if a user requirement is not successfully finished, e.g. unsuccessful
memory verification.

l Running - indicates a real program run

l Halted - emulator is halted

l Break - emulator is stopped on the break condition

l Step - a program step is in progress

l Download - emulator configuration is in progress

l Verify - emulation memory verification is in progress

l Busy - emulator is busy waiting for the end of specified operation

Integrated Development Environment and Debugger DPIC 47

3.19.2 Program Manager

Program manager displaying is located in the middle of the lower bar of the work
area. It consists of two parts separated by a line. On the left a project name is displayed,
on the right is a name of object file currently present in emulation memory. If neither
project nor object is open, the �None� condition is displayed.

3.19.3 Available Memory Indicator

On the right bottom corner memory available to the integrated environment is
displayed in bytes.

3.2 Window for Error Messages of the Compiler

A window for error messages of the compiler is an object for easy searching lines
with errors generated by the compiler. The window is automatically open if any error
in source text is found in any passage of compilation. After opening the window, errors
are displayed in the following format:

line number, file, error type

By pressing the Enter key, source text editor is activated and the line where an
error is detected becomes the current one. To move around errors use the Alt-F8
(forward) and Alt-F7 (backward) hotkeys. If the compilation consists of more source
files and at least two of them contains errors, it is possible to select and tag desired
error by the Space key. Then, errors will be browsed only in the file where the tagged
errors are.

It is allowed to correct an error just after it is found without loss of other errors. If
you delete a line with an error, the error is deleted from the error listing as well.

During compilation, some mismatches or other problems can be found, which
need a warning to the user. In this case the error window is not automatically open. If
you want to open it, press the Alt-A keys in source text editor.

48 DPIC/EPIC - User�s Guide

3.21 ASCII Chart
Using the �≡→ASCII� command you can open a window where the ASCII table

is displayed. On the bottom there is a bar where the current character (selected by the
cursor) is displayed including its numeric representation in decimal and hexadecimal.

3.22 Calculator
Using the �≡→Calculator� a window with a simple calculator is open. It operates

with whole numbers ranging -32768 to 32767. The calculator is able to work in decimal,
hexadecimal and binary radix. The following operations are available:

error deleting - the S key

sign change - the _ key

second complement - the ^ key

adding - the + key

subtracting - the - key

integer division - the / key

modulus - the M key

multiplication - the * key

evaluation - the Enter key

set decimal - the . key

set hexadecimal - the H key

set binary - the % key

Using keys corresponding to other buttons you can enter numeric operands for
calculation. Only the 0 and 1 keys in binary, 0 to 9 in decimal and 0 to 9 and A to F in
hexadecimal are valid.

Integrated Development Environment and Debugger DPIC 49

3.23 Videostop
If your application is out of order, Videostop gets you completely down. It is a

simple game for rest time. The goal is to stop casting the dice when at least two dice
has the same number. Ten tries for it is available in one game. If a try is successful, ten
points are added. If all the three of dice match, a hundred points bonus is added. If a try
is unsuccessful, ten points are subtracted. Using the scroll bar you can set the casting
speed. The first press of the Go button the dice are revealed. Another pressing this
button starts casting. The Stop button stops casting. The New button resets a game.
The Close button ends the game and closes the Videostop window.

3.24 Information
The Information Window gives the basic information about the hardware and

software version.

3.25 Error Messages of the IDE
Symbol not exist

The specific symbol is unknown and then unaccessible. Error can be caused by a
typing error or by the fact that a successful compilation did not precede a symbol
specification.

Syntax error
An error in expression is found. Thus, the expression can be evaluated. Error can
be caused by a typing error in symbol name, incorrect brace entry of an array
name, unknown operand and so on.

50 DPIC/EPIC - User�s Guide

Out of symbol range
Number of symbols which can be displayed in Watch window is exceeded. Open
another window for desired symbol.

Not accessible symbol
The specific symbol is not accessible because of incomplete definition. The error
occurs when editing a constant or so.

Insufficient memory
Specified memory block is unsuccessfully allocated. The error can occur when
work memory structures are allocated.

Error of breakpoint type
Illegal breakpoint or trace point is found. The error can occur when an event is
defined.

Out of break memory
Maximal number of event definitions exceeded. A particular solution of this
problem can be using wider address range for event definitions.

Not accessible break(s)
The breakpoint is not accessible, e.g. the range exceeds the legal memory area of
emulated processor.

Break out of range
Event definition contains an item which makes the event inaccessible by the
hardware, especially if address of specified break is out of memory implemented
in specific processor.

Unable to edit address
An attempt to edit on the address where current situation does not allowed it.

Value has been unchanged
An unsuccessful attempt to change emulation memory

Access denied
Specific activity is refused by emulator hardware or firmware.

Disk full
Disk capacity exceeded. File was not successfully saved.

Unable to open *.DEF file
Processor definition file can not be open. The environment recovers from this
error by default setting. Allow to read the definition file to avoid the error.

*.DEF file read error
An error in reading of the definition file. The file is corrupted. Reinstall the file
from installation diskettes.

*.DEF file not found
Processor definition file is not found in home directory of integrated environment.

Integrated Development Environment and Debugger DPIC 51

Could not open project file
Project definition file can not be open. The file is not found or read error occurred.

Could not create project file
Unsuccessful creation of a project file. Either no free space is on the disk or an
internal error of environment is found.

Project not opened
An attempt to close a project without opening any one.

Unable to load object file
Object file is not found or read error is detected.

Can not compile this line
The line assembler is not able to compile the line

Download file not found
The initialization file of emulator is not found. Corresponding files with the BIN
extensions must be in home directory of the emulator.

Download error
Error in emulator initialization. It can be caused by hardware breakdown or by
incompatibility of configuration file.

Unable to find help file
The help file is not found. This file with the HLP extension must reside in the
home directory of the integrated environment.

Incompatible object format
An attempt to open a project with a structure not corresponding to the project
format of integrated environment.

Recompile the program first
Inconsistency in creation of an object file and source file. Recompile the program.

No line to PC reference exists
Currently processed line has no reference to address in program memory. This
error may be caused by an attempt to enter switching breakpoint after unsuccessful
compilation or to enter a breakpoint to the line which has no representation in
operation code, e.g. a comment line.

Incompatible object format
Structure of the object file format does not correspond to an object of integrated
environment.

Unable to evaluate expression
Evaluation of specified expression is not possible, because of incorrect syntax or
no existence of the symbol.

52 DPIC/EPIC - User�s Guide

Error in Emul Init Procedure
Error in installation of emulated processor driver. It is an internal error caused by
driver and hardware incompatibility or by corrupted PC parallel port, the cable or
the emulator.

3.26 Information Messages of the IDE
Save current desktop?, Save current project?

If automatic desktop saving is disabled, after finishing a project job the user is
asked to confirm saving of the current desktop.

Source has been changed - Rebuild?
Source text does not correspond to the file the compilation was created from. No
references to lines exist or these references do not correspond to the current
condition. If the source text is not compiled, the line corresponding to program
counter value will not be highlighted in the source file while stepping a program.

Load object file?
 If no project is open and you enter a command to open a file with the extension
corresponding to the source file in the environment setting, you are asked to
confirm the change of the emulation memory. If the change is not confirmed, the
file is open but no references to source text lines are installed with all resulting
consequences.

Emulator not found. Run Demo?
If communication with the emulator was not established, the situation can be
solved either by confirmation (i.e. the demo simulator is invoked) or by refusal
(i.e. the environment will repeat an attempt to establish communication). If no
emulator is available, the environment can be invoked just in demo mode using
the /DEMO parameter in command line.

Project Exists - Overwrite?
An ask to confirm the Save Project as.. command if a project of the specific name
exists (and then it would be overwritten).

PC Overflow
An incorrect overflow of the processor program counter occurred because of an
error in developed application program. This situation occurs if a PC value is
changed from a maximum to zero while running the program, i.e. the user program
�strayed�. You can suppress the message by disabling this in the Global Events
option.

TMR0 Overflow
The counter/timer overflowed. The message can be suppressed by disabling this
in the Global Events option.

Integrated Development Environment and Debugger DPIC 53

WatchDog Overflow
The watchdog timer overflowed and the processor is reset. The message can be
suppressed by disabling this in the Global Events option.

Stack Overflow
The stack overflowed or underflowed. The error occurs if number of nested
procedures exceeds the processor stack depth or if a return from a procedure was
executed without corresponding procedure call. Application programs can use
this effect intentionally. In this case, you can suppress the error message in the
Global Events option and use a break on the stack overflow condition. For standard
programs, it is recommended to check the stack overflow/underflow to avoid
errors of this type.

Trace Overflow
The emulation was stopped after trace buffer overflow. The trace buffer is full
and then any instruction causes a loss of one history item written into the trace
buffer. Stopping and a message can be suppressed by disabling this in the Global
Events option.

External Pin Break
The emulator stopped because of an edge detection on the external probe. The
message can be suppressed by disabling this in the Global Events option.

External Reset Occurred
Processor reset from an external source. The external reset source means any
reset of emulated processor in other way than from a computer keyboard.

54 DPIC/EPIC - User�s Guide

4. Compiler of the Assembler Language

This chapter describes the assembler programming language for microcontroller
PIC16C5x and PIC16Cxx series.

The language compiler is a program which compiles a source text of program
(written with respect to rules of the specific language) to binary code able to be loaded
into a processor and then run.

An input of the compiler is a file containing source text of the program (usually
a file with the �ASM� extension).

Source text compilation goes in two passages. The first passage is a preparing
(preprocessing) one, when syntax is checked, macroinstructions are expanded, symbols
are defined and files are included. Run of this passage can be controlled using compiler
directives either directly written into the source text or set via the dialog box of the
integrated environment. After the preprocessing passage is done, real compilation of
the program source text to binary code follows. The compiler outputs the following
files:

l a file called �listing� containing a complete compilation protocol, numbered source
file lines, marked errors, table of symbols and their references. The extension of
this file is �LST�.

l a file of binary code for the specified processor in the INHX-8M or INHX-16
format (it is selected by compiler setting in the dialog of the integrated
environment). The extension of this file is �HEX�.

l If errors occur during compilation, an error file is created. It contains file and line
specification where errors was found and a brief description of the error.

l a file called �object� which contains information important to the integrated
environment, e.g. names and values of defined symbols and references to lines of
source text (needed for stepping). The extension of this file is �OBJ�.

Block diagram of compiler operation:

Input file Language compiler Output files

*.ASM *.LST, *.HEX

*.OBJ, *.ERR

Compiler of the Assembler Language - Language syntax 55

4.1 Program Source Text
The program source text consists of program lines. Generally a program line

contains four parts separated by spaces or tabs from each other. The format of a program
line is as follows:

l label - a symbolic reference to specific program line to specify destination of
jumps for program branching. Label is not compulsory and is usually used if you
need to jump to this line from another part of the program. The label name must
match conditions laid down to symbols (see symbols).

l command - mnemonic abbreviation of instruction from the instruction set of
specific processor (see instruction set) or a directive (see compiler directives).

l operands - operands of an instruction or a directive of compiler. Number of
operands depends on the instruction type (see instruction set) or a directive (see
compiler directives). Operands are separated with a comma from each other.

l comment - any text initiated with the semicolon. Comments can contain any
characters and are fully ignored by the compiler.

4.2 Constants
Constants mean any numeric or text information in program, which are known

during compilation (i.e. not contents of registers which are not defined before running
a program). Compiler arithmetics converts internally numeric constants to 16-bit
unsigned integers (ranging 0 to 65535) and text constants to array of 16-bit numbers.

4.2.1 Numeric Constants

Numeric constants serve for example to specifying of instruction operands (register
numbers, bit positions, literals). They can be entered in various radix or in ASCII. The
following radix are available: binary (base 2), octal (base 8), decimal (base 10), and
hexadecimal (base 16). You can specify a default radix (decimal or hexadecimal) to
interpret numbers without radix specification. Pay attention to entries which can be
misinterpreted depending on specified default radix (e.g. 1D means 1 in decimal default
radix while it does 29 in hexadecimal). Radix specification is not case sensitive (e.g.
22h=22H).

4.2.2 Text Constants

Text constant is a special type of constant. You can imagine it as an array of
numeric values assigned to specified ASCII characters. You can not use text constants

56 DPIC/EPIC - User�s Guide

everywhere but in the following cases only:

l table definition (the TABLE directive)

l definition of program memory contents (DB and DW directives)

l definition of constant array of bytes (the CONST BYTE [] directive)

Text constants are defined as ASCII characters enclosed in double quotes.
(E.g. �This is a text�). If you need to insert a non-printable character or any numeric
values, you can type hex codes in the \x<hex number> format. (E.g. �text1\x20text2�
inserts the ASCII character of code 20 (space) between text1 and text2.

4.3 Expressions
Expression means mathematical or logical operations performed with constants.

For example, �3+4� is an expression representing mathematical addition of the constants
3 and 4. The result is the constant 7. To construct mathematical and logical expressions,
you can use operations in the following table. If an expression consists of more
mathematical or logical operations, rules of precedence of operations is specified as
follows: expressions within parenthesis are always evaluated first, then operations of
precedence 2, then operations of precedence 3 and so on. If more operations have the
same precedence, the expression is evaluated from left to right. In case of logical
operations (labeled by the letter �L� in the table), the result of expression evaluation is
either zero value (the expression value is false, e.g. 1>2) or the 1 value (the expression
value is true, e.g. 2!=3).

xidaR yrtnE elpmaxE xidartluafedninoitaterpretnI
lamiced lamicedaxeh

yranib '>rebmunyranib<'B '01'B 2 2
B>rebmunyranib< B1 1)72(B1

latco

'>rebmunlatco<'O '001'O 46)46(04
'>rebmunlatco<'Q '001'Q 46)46(04

O>rebmunlatco< O001 46)46(04
Q>rebmunlatco< Q001 46)46(04
>rebmunlatco<\ 001\ 46)46(04

lamiced

>rebmunlamiced< 05 05)08(05
'>rebmunlamiced<'D '001'D 001)001(46

D>rebmunlamiced< D1 1)92(D1
>rebmunlamiced<. 001. 001)001(46

lamicedaxeh
'>rebmunlamicedaxeh<'H '01'H 61)61(01

H>rebmunlamicedaxeh< H01 61)61(01
>rebmunlamicedaxeh<x0 01x0 61)61(01

IICSA '>retcarahcIICSA<'A 'd'A 001)001(46
'>retcarahcIICSA<' 'd' 001)001(46

Compiler of the Assembler Language - Language syntax 57

4.4 Symbols
Symbols in programs mean the following:

l symbolic constant names (defined by the EQU and SET directives)

l data type names (defined by the BIT, BYTE, CONST BYTE directives)

l labels (see program line)

l macroinstruction names (see macroinstructions)

Every symbol has its own name and a symbol definition. The syntax depends on
a symbol type.

Symbol name must be unique in the entire program and must match the following
conditions to be correctly interpreted:

1. symbol must begin with a letter �A�-�Z�, �a�-�z�

2. symbol may contain only letters �A�-�Z�, �a�-�z�, numbers �0�-�9' and the underscore
�_� character. Thus, separators (space, tab) must not be used.

ytiroirP rotarepO noitpircseD elpmaxE
.1)(sesehtneraP 3/)8+7(

.2

! toN)01<1p(!
~ tnemelpmoC 8~
+)rebmunevitisop(sulpyranU 3+
-)rebmunevitagen(sunimyranU 4-

.3
* noitacilpitluM 5*2
/ noisiviD 3/5
% suludoM 3%5

.4 + noitiddA 2+2
- noitcartbuS 2-6

.5 << tfihstfeL 2<<5
>> tfihsthgiR 1>>4

)L(.6

< nahtsseL y<x
=< lauqeronahtsseL y=<x
> nahttaerG y>x
=> lauqeronahttaerG y=>x

)L(.7 == lauqelacigoL y==x
=! lauqetonlacigoL y=!x

.8 & DNAevisulcnI y&x

.9 ^ ROevisulcxE y^x
.01 | ROevisulcnI y|x

)L(.11 && DNAlacigoL y&&x
)L(.21 || ROlacigoL y&&x

58 DPIC/EPIC - User�s Guide

4.4.1 Symbolic Names of Constant

You can use the EQU or SET directives to define a symbolic name of constant.
Both of the directives have the same syntax and assign a constant value to symbolic
name. Instead of a value an expression can be used and then the resulting value is
assigned to the symbolic name.

<symbol name> EQU <value>
<symbol name> SET <value>

For example, given:
Data1 SET 13h
Data2 EQU 10h
Data3 EQU (1+Data1)*Data2

The difference between EQU and SET is only in possibility to change a symbol
value. If a symbol value is defined by the SET directive, it is allowed to alter the value
by another SET or by EQU directives. But if you attempt to change a value assumed
by the EQU directive either by SET or EQU directives, the compiler reports an error.

4.4.2 Data Types

Data types are implemented in program language especially for easier work with
processor registers. They allow quite unique addressing bits or bytes. Definition of a
data type consists from a symbol name (matching the conditions laid down to a symbol
name), a keyword specifying the data type and either an information about a location
in memory area (address, bit, bank) or a value.

Besides of basic types, you can define an extended type (array). Arrays have a
fixed number of components of one type. The size must be defined. Components are
numbered from 0 and accessible via indexes written just after a symbol name in square
brackets. A symbol name without an index means the first component, i.e. the component
with the index 0. The Byte type is intended for instructions using registers, the Bit type
for bit-oriented instructions and the constant type is suitable for instructions operating
with literals.

The compiler recognizes and accepts the following data types:

l Byte - one register (byte) in the data memory. The definition contains an address
and a register bank. See the following example.

<symbol name> BYTE @<address>,<bank>

Compiler of the Assembler Language - Language syntax 59

l Bit - one bit of a register in the data memory. The definition contains an address,
bit number (bit position in the register, 0=LSb, 7=MSb) and register bank number.
If a bit number is omitted, zero is assumed. See the following example.

<symbol name> BIT @<address>,<bit>,<bank>

l Byte Array - an array of registers (bytes) in the data memory. The definition
contains a size of the array (number of bytes of the array), the address and the
bank which specify the address of the first component of the array. Following
components of the array (bytes) are allocated upwards. See the following example.

<symbol name> BYTE[size] @<address>,<bit>,<bank>

l Bit array - an array of bits in the data memory. The definition contains a size of
the array (number of bits of the array), the address, the bit number (bit position in
the register, 0=LSb, 7=MSb) and register bank number. If a bit number is omitted,
zero is assumed. See the following example.

<symbol name> BIT @<address>,<bit>,<bank>

l Const Byte - an 8-bit constant (byte) equivalent to a symbol defined by the EQU
directive. The definition contains a value assigned to the symbol. You can enter
an expression instead of the value and then the resulting value is assigned to the
symbol. See the following example.

<symbol name> CONST BYTE = <value>

l Const Byte Array - an array of 8-bit constants (bytes). The definition contains a
size of the array and values separated by commas. If the size is entered by a
number, it is automatically evaluated from the length of the array. You can enter
the values as numeric constants, expressions, text constants or previously defined
arrays of constant bytes.

<symbol name> CONST BYTE[size] = <value>,{,<value>...}

The following example illustrates syntax and allocation of various data types. No
bank is specified and that is why the default bank 0 is assumed.

count BYTE @8
state BIT @9
array BYTE[3] @0Bh
bits BIT[10] @9,2
number CONST BYTE = 1+2*3
data CONST BYTE[] = �text�, number, @state, 22h, 3*5

60 DPIC/EPIC - User�s Guide

A constant symbol is not resident in the data memory. This is a thing of the compiler
only. If a constant is used in program, the compiler just replaces the symbol by its
numeric value. Values of the constant and the constant arrays are: number=7,
data=data[0]=116 (A�t�), data[1]=101 (A�e�), data[2]=120 (A�x�), data[3]=116 (A�t�),
data[4]=7, data[5]=9 (address of the �state� symbol), data[6]=34 (22h), data[7]=15.

-erddA
ss

7 6 5 4 3 2 1 0
h80 rebmun
h90]5[stib]4[stib]3[stib]2[stib]1[stib]0[stib etats
hA0]9[stib]8[stib]7[stib]6[stib
hB0]0[yarra
hC0]1[yarra
hD0]2[yarra

Caution: The byte or bit types and the array of them mean contents of the register
or a bit value which are not known during compilation (e.g. the �CLRF count� operation
clears register 8 but does not clear the �count� symbol. That is why these data types
can be used only with appropriate operations intended for them. To get an address of
a byte or a bit or the array of bytes or bits, the �@� character (which means an address)
must precede the symbol name.

4.4.3 Labels

A label is entered as the first item in a command line (see command line). You can
emphasize the fact that it is a label by a colon followed the label name. But this does
not affect the label name at all, because the colon is ignored.

For example, given:
read1 MOVLW 10h ; defines a label read1

For example, if you want to define more labels for a single address, it is allowed
to use another way of definition called a standalone label. If you define a standalone
label, neither a command nor a directive, only a comment is allowed in this line. Besides
of this, a standalone label must start in column 1 or must be followed by the colon.

For example, given:
...
label1:
label2 CLRF 8h ; defines two labels

Compiler of the Assembler Language - Language syntax 61

4.5 Instruction Set of the PIC Processors
The instruction set is defined by the manufacturer of the processor, i.e. by Microchip

in this case. Each processor family has its own instruction set. Instructions are usually
called by names abbreviating the operation (mnemotechnic, symbolic instruction names).

The compiler compiles programs for 16C5x and 16Cxx families. Both of them are
similar to one another and their instruction sets are the same (mnemotechnic instruction
names) except of some differences. But binary opcodes are quite different. The 16C5x
family uses 12-bit wide path, while 16Cxx does 14-bit wide one. Generally, the
instruction set can be separated into groups as follows:

l byte-oriented instructions

l bit-oriented instructions

l literal instructions

l control instructions

4.5.1 Byte-oriented Operations

The byte-oriented instructions work with a data register. They allow to move data
between a data register and the work register W, modify the register value (increment,
decrement, rotation,...) and arithmetic and logic operations with a value in the W register.

An instruction operand is a register number which can be specified just by a
constant or by the data type of byte.

Most of instruction of this category needs another operand to specify where the
result is stored. In case of 0, the result is stored to the W register, in case of 1 the
destination register is specified by the first operand. The compiler has predefined two
symbols for this purpose (W=0 and F=1). If the destination is omitted, the register
specified by the first operand is used.

For example, given:
CLRF 8h ; clear register 8h
; increments register 10
INCF 10h,1
INCF 10h,F
INCF 10h
; store incremented value of register 10 to W register
INCF 10h,0
INCF 10h,W
; if you use the definition from the example of data types,
; then:
MOVWF array[1] ; copies W register to register 12

62 DPIC/EPIC - User�s Guide

4.5.2 Bit-oriented Operations

The bit-oriented instructions operate with bits in data registers of the processor.
They allow to set a bit to 1 or 0 or to test logical value of specified bit and branch a
program depending on the result.

This kind of instruction uses the bit data type or one component of a bit array.
These types fully specify the bit.

If you do not specify the operand using the bit type, two operands must be used.
The first one specifies the register, the second one does the position of the bit in the
register (0-7).

For example, given:
BCF 8,2 ; clears bit 2 of register 8
; if you use the definition from the example of data types,
; then:
BSF bits[2] ; set bit 4 of register 9

4.5.3 Literal Operations

The literal instructions are intended for modification of the work register W and
for program branching and subroutine calling. The jump (GOTO), call (CALL) and
return from subroutine (RETLW) belongs to them as well.

These instructions have a constant (defined in any way) as an operand.

Example: MOVLW 10h ; writes 10h to the work register W

4.5.4 Control Operations

The control instructions are particularly intended for control of the processor
operation (switch to �sleep� mode, reset of the �Watchdog� timer,...). The control
instructions except of the TRIS instruction have no operand since they need no additional
information. The TRIS instruction sets pins of the processor as input or output. The
port register number is a parameter in this case.

Compiler of the Assembler Language - Language syntax 63

4.5.5 PIC16C5x Instruction Set Summary

ADDWF - ADD W and F
Syntax: ADDWF f,d
Operation: (W+f) → d
Description: Add the contents of the W register and register f. The result is stored in

the W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: C, DC, Z

ANDLW - AND Literal and W
Syntax: ANDLW k
Operation: (k&W) → W
Description: And the contents of the W register and the literal k. The result is stored

in the W register.
Cycles: 1 Affects: Z

ANDWF - AND W with F
Syntax: ANDWF f,d
Operation: (W & f) → f,d
Description: And the contents of the W register and register f. The result is stored in

the W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: Z

BCF - Bit Clear F
Syntax: BCF f,b
Operation: 0 → f(b)
Description: Bit b in register f is cleared
Cycles: 1 Affects: -

BSF - Bit Set F
Syntax: BSF f,b
Operation: 1 → f(b)
Description: Bit b in register f is set
Cycles: 1 Affects: -

BTFSC - Bit Test F, Skip if Clear
Syntax: BTFSC f,b
Operation: skip if f(b)=0
Description: If bit b in register f is 0 then the next instruction is skipped
Cycles: 1 (2 - if skip) Affects: -

64 DPIC/EPIC - User�s Guide

BTFSS - Bit Test F, Skip if Set
Syntax: BTFSS f,b
Operation: skip if f(b)=1
Description: If bit b in register f is 1 then the next instruction is skipped
Cycles: 1 (2 - if skip) Affects: -

CALL - subroutine CALL
Syntax: CALL k
Operation: PC+1 → TOS; k → PC<7:0>; 0 → PC<8>; PA2,PA1,PA0 → PC<11:9>
Description: Return address (PC+1) is pushed in stack. Constant k is loaded into

lower eight PC bits. The upper PC bits are loaded from program page
pre-select bits. Thus, the program continues from the new address.

Cycles: 2 Affects: -

CLRF - CLeaR F
Syntax: CLRF f,d
Operation: 00h → f
Description: Register f is cleared
Cycles: 1 Affects: Z

CLRW - CLeaR W
Syntax: CLRW
Operation: 00h → W
Description: The W register is cleared
Cycles: 1 Affects: Z

CLRWDT - CLear WatchDog Timer
Syntax: CLRWDT
Operation: 00h → WDT, 0 → prescaler
Description: The watchdog timer and the prescaler is reset.
Cycles: 1 Affects: 1 → TO, 1 → PD

COMF - COMplement F
Syntax: COMF f,d
Operation: /f → d
Description: The contents of register f are complemented. The result is stored in the

W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: Z

Compiler of the Assembler Language - Language syntax 65

DECF - DECrement F
Syntax: DECF f,d
Operation: (f-1) → d
Description: Register f is decremented. The result is stored in the W register (if d=0)

or in register f (if d=1).
Cycles: 1 Affects: Z

DECFSZ - DECrement F and Skip if Zero
Syntax: DECFSZ f,d
Operation: (f-1) → d, skip if the result is zero
Description: Register f is decremented. The result is stored in the W register (if d=0)

or in register f (if d=1). If the result is zero, the next instruction is skipped.
Cycles: 1 (2 - if skip) Affects: Z

GOTO - GO TO address (unconditional jump)
Syntax: GOTO k
Operation: k → PC<8:0>, PA2,PA1,PA0 → PC<11:9>
Description: The nine bit constant is loaded into lower part of PC. The upper PC bits

are loaded from program page pre-select bits in the STATUS register.
Thus, the program continues from the new address.

Cycles: 2 Affects: -

INCF - INCrement F
Syntax: INCF f,d
Operation: (f+1) → d
Description: Register f is incremented. The result is stored in the W register (if d=0)

or in register f (if d=1).
Cycles: 1 Affects: Z

INCFSZ - INCrement F and Skip if Zero
Syntax: INCFSZ f,d
Operation: (f+1) → d, skip if the result is zero
Description: Register f is incremented. The result is stored in the W register (if d=0)

or in register f (if d=1). If the result is zero, the next instruction is skipped.
Cycles: 1(2 - if skip) Affects: Z

IORLW - Inclusive OR Literal with W
Syntax: IORLW k
Operation: (W .or. k) → W
Description: Or the contents of the W register and the literal k. The result is stored in

the W register.
Cycles: 1 Affects: Z

66 DPIC/EPIC - User�s Guide

IORWF - Inclusive OR W with F
Syntax: IORWF f,d
Operation: (W .or. f) → f,d
Description: Or the contents of the W register and register f. The result is stored in

the W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: Z

MOVF - MOVe F
Syntax: MOVF f,d
Operation: (f) → d
Description: The contents of register f are moved into the W register (if d=0) or back

into register f (if d=1)
Cycles: 1 Affects: Z

MOVWF - MOVe W to F
Syntax: MOVWF f,d
Operation: W → d
Description: The contents of the W register is moved to the W register.
Cycles: 1 Affects: -

NOP - No OPeration
Syntax: NOP
Operation: No operation
Description: No operation
Cycles: 1 Affects: -

OPTION - load OPTION register
Syntax: OPTION
Operation: W → OPTION
Description: The W register is copied to the OPTION register
Cycles: 1 Affects: -

RETLW - RETurn Literal to W
Syntax: RETLW k
Operation: k → W, TOS → PC
Description: Return from subroutine. PC is popped from the stack and the literal k is

loaded into the W register.
Cycles: 1 Affects: -

Compiler of the Assembler Language - Language syntax 67

RLF - Rotate Left F through carry
Syntax: RLF f,d
Operation: f<n> → d<n+1>, f<7> → C, C → d<0>
Description: The contents of register f are rotated one bit to the left through the carry

bit. The result is stored in the W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: -

RRF - Rotate Right F through carry
Syntax: RRF f,d
Operation: f<n> → d<n-1>, f<0> → C, C → d<7>
Description: The contents of register f are rotated one bit to the right through the

carry bit. The result is stored in the W register (if d=0) or in register f (if
d=1).

Cycles: 1 Affects: -

SLEEP - SLEEP
Syntax: SLEEP
Operation: 0 → PD, 1 → TO, 00h → WDT, 0 → prescaler
Description: Reset the �power-down� and set �time-out� bits in the STATUS register

and reset the watchdog timer and the prescaler. The processor is put
into the SLEEP mode. The oscillator is stopped.

Cycles: 1 Affects: TO, PD

SUBWF - SUBtract W from F
Syntax: SUBWF f,d
Operation: (f-W) → d
Description: Subtract the W register from register f. The result is stored in the W

register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: C, DC,Z

SWAPF - SWAP F
Syntax: SWAPF f,d
Operation: f<0:3> → d<4:7>, f<4:7> → d<0:3>
Description: The upper and lower nibbles of register f are exchanged. The result is

stored in the W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: -

68 DPIC/EPIC - User�s Guide

TRIS - load TRIS register
Syntax: TRIS f
Operation: W TRIS register f
Description: The contents of the W register is stored to the specified output driver

control register (f=5, 6, or 7)
Cycles: 1 Affects: -

XORLW - Exclusive OR Literal with W
Syntax: XORLW k
Operation: (W .xor. k) → W
Description: Xor the contents of the W register and the literal k. The result is stored

in the W register.
Cycles: 1 Affects: Z

XORWF - Exclusive OR W with F
Syntax: XORWF f,d
Operation: (W .xor. f) → d
Description: Xor the contents of the W register and register f. The result is stored in

the W register (if d=0) or in register f (if d=1).
Cycles: 1 Affects: Z

4.5.6 PIC16Cxx Instruction Set Summary

PIC16Cxx instruction set is a superset of the PIC16C5x one. Thus, only additional
instructions and the instructions which differ from above are described as follows:

ADDLW - ADD Literal and W
Syntax: ADDLW k
Operation: (k+W) → W
Description: Add the contents of the W register and the literal k. The result is stored

in the W register.
Cycles: 1 Affects: Z

CALL - subroutine CALL
Syntax: CALL k
Operation: PC+1 → TOS; k → PC<10:0>; PCLATH<4:3> → PC<12:11>
Description: Return address (PC+1) is pushed in the stack. The 11-bit constant k is

loaded into lower eleven PC bits. The upper PC bits are loaded from the
PCLATH register. Thus, program continues from the new address.

Cycles: 2 Affects: -

Compiler of the Assembler Language - Language syntax 69

GOTO - GO TO address (unconditional jump)
Syntax: GOTO k
Operation: k → PC<10:0>, PCLATH<4:3> → PC<12:11>
Description: The eleven bit constant is loaded into lower part of PC. The upper PC

bits are loaded from the PCLATH (f3) register. Thus, the program
continues from the new address.

Cycles: 2 Affects: -

RETFIE - RETurn From IntErrupt
Syntax: RETFIE
Operation: TOS → PC, 1 → GIE
Description: Return from interrupt. PC is popped from the stack and interrupt is

enabled by setting the GIE flag (Global Interrupt Enable).
Cycles: 2 Affects: -

RETURN - RETURN from subroutine
Syntax: RETURN
Operation: TOS → PC
Description: Return from interrupt. PC is popped from the stack.
Cycles: 2 Affects: -

SUBLW - SUB Literal and W
Syntax: SUBLW k
Operation: (k-W) → W
Description: Subtract the contents of the W register from the literal k. The result is

stored in the W register.
Cycles: 1 Affects: Z

4.6 Compiler Directives
Compiler directives are intended for compilation parameters setting. These are

not compiled into processor binary code. The only exception are the DB, DW and
TABLE instructions, which store data to program memory. Some directives (e.g.
directives for case sensitivity, number of lines per page of listing, disabling creation of
specified output files, ...) are set in dialog windows of the integrated environment.
Others (e.g. including a file, setting address for compilation, conditional assembly,
macro definition, ...) are intended to be written directly into the program source text.
These directives are discussed in this chapter. Most of the directives allow to be entered
in two ways (see directive syntax). In case of using the �#� character (an equivalent of
syntax of directives used by higher programming languages, e.g. the C one), it is not
permitted to define a label in this line.

70 DPIC/EPIC - User�s Guide

4.6.1 Directive Overview

BANK selection of data memory register bank
BIT bit or array of bit data type definition
BYTE byte or array of byte data type definition
CONST BYTE constant or array of constant definition
DB store data into the program memory
DW store data into the program memory
ELSE conditional compilation switch
END end of program
ENDIF end of conditional compilation
ENDM end of macro definition
EQU assign a value to a symbol
IF begin of conditional compilation
INCLUDE include a file
LOCAL local label definition within a macro
MACRO begin of macro definition
ORG setting of an address for compilation
PRAGMA setting of compiler parameters (disable warning generation)
SET assign a value to a symbol
TABLE table of value definition

4.6.2 BANK Directive

The BANK directive selects a default data memory bank. If you define data types
(e.g. bit or byte) without a bank specification, the default bank will be used. If no
BANK directive is used at all, the bank 0 is assumed.

Syntax: #BANK <bank number>

Example: #BANK 0 ; sets default bank 0

4.6.3 BIT Directive
The BIT directive is intended for definition of bit or bit array data types. The

definition consists of a symbol name, the keyword BIT (in case of bit array BIT[]) and
a unique bit specification (register address, bit position, bank). In case of bit array it
defines the first component of the array. If a bank is omitted, the default bank is used.
If a bit position is omitted, bit 0 (LSB) is assumed. If a bank is specified, the bit
position must not be omitted. In case of a bit array, the array size (number of components
of the array) must be specified. Components of the array are numbered (starting from
0) by an index in square brackets following the array name. If no index is specified,

Compiler of the Assembler Language - Language syntax 71

zero is assumed. The array components (bits) are allocated from the specified position
upwards to MSB and higher addresses (see data types).

Syntax: <symbol> BIT @<address> {<bit>, {<bank>}}
<symbol> BIT [<size>] @<address> {<bit>, {<bank>}}

Example: littlebit BIT @8,1 ; bit 1 in register 8 array1
BIT[3] @8,2 ; 3-bit array

4.6.4 BYTE Directive

The BYTE directive is intended for definition of byte or byte array data types.
Definition consists of a symbol name, the keyword BYTE (BYTE[] in case of a byte
array) and unique byte specification (register address, bank). In case of byte array it
defines the first component (byte) of the array. If a bank is omitted, the default bank is
used. In case of byte array, the array size (number of components of the array) must be
specified. Components of the array are numbered (starting from 0) by an index in
square brackets following the array name. If no index is specified, 0 is assumed. The
array components (bytes) are allocated from the specified position upwards to higher
addresses (see data types).

Syntax: <symbol> BYTE @<address>, {<bank>}
<symbol> BYTE [<size>] @<address>, {<bank>}}

Example: byte1 BYTE @9 ; bit 1 in register 8 array1
BYTE[3] @.10 ; 2-byte array

4.6.5 CONST BYTE Directive

The CONST BYTE directive defines a constant (similar to the EQU and SET
directives) or an array of constant (CONST BYTE[]). The definition consists from a
symbol name, the keyword CONST BYTE (CONST BYTE[] in case of a byte array)
and a value. The value can be specified as numeric constant, text constant or an
expression. In case of an array, the array size can be omitted because it is automatically
evaluated from the number of specified values. Components of the array (bytes) are
numbered (starting from 0) by an index in square brackets following the array name. If
no index is specified, 0 is assumed.

Syntax: <symbol> CONST BYTE = <value>
<symbol> CONST BYTE[{size}] = <values>

Example: const1 CONST BYTE = 10h
const2 CONST BYTE[] = �abcd�, 0x20, const1

72 DPIC/EPIC - User�s Guide

4.6.6 DB Directive

The DB directive stores an 8-bit literal (byte) into the program memory on current
address. The value can be specified by a numeric constant, text constant, array of
constant or an expression.

Syntax: {<label>} DB <value> {<value>, ...}

Example: ; storing a text into program memory starting 100h
ORG 100h
DB �program version 1.0�

4.6.7 DW Directive

The DW directive stores a constant (ranging up to the instruction width of the
specific processor family) into current address in program memory. The value can be
specified by a numeric constant, text constant, array of constants or an expression.

Syntax: {<label>} DW <value>, {<value>, ...}

Example: ; specifies configuration fuses of 16C84
ORG 2007h
DW 0xXXXX

4.6.8 END Directive

The END directive defines an end of the program. All lines followed this directive
are ignored by the compiler.

Syntax1: {<label>} END
Syntax2: #END

Example: END

4.6.9 EQU Directive

The EQU directive defines a symbol value. The value can be specified as a numeric
constant or an expression. If the specified symbol already exists, the compiler outputs
an error.

Syntax: <symbol> EQU <value>

Example: const1 EQU 20+6*2
const2 EQU const1*3

Compiler of the Assembler Language - Language syntax 73

4.6.10 IF - ELSE - ENDIF Directives

The IF - ELSE - ENDIF directives define a block of conditional assembly. The
definition begins with the IF directive followed by an expression which can be evaluated
during compilation. Thus, only constants and previously defined symbols can be used.
One of two alternatives comes after evaluation:

1. The expression is evaluated as true (the result is a number different from zero).
Then, only <code TRUE> is compiled while <code FALSE> is ignored by the
compiler.

2. The expression is evaluated as false (the result is zero). Then, only <code FALSE>
is compiled while <code TRUE> is ignored by the compiler.

The ELSE separates the <code TRUE> from <code FALSE>. The ENDIF directive
ends the conditionally compiled block.

Syntax: #IF <expression> or: IF <expression>
<code TRUE> <code TRUE>

#ELSE ELSE
<code FALSE> <code FALSE>

#ENDIF ENDIF

4.6.11 INCLUDE Directive

The INCLUDE directive inserts a file in program source text. It is usually used
for including symbol definitions, macros, libraries and so on. The name of the file to be
included is an operand of the directive. The name must be enclosed with parenthesis.
Up to nine levels of nesting is permitted.

Syntax1: {<label>} INCLUDE �<file name>�
Syntax2: #INCLUDE �<file name>�

Example: INCLUDE �PICREG.EQU�

4.6.12 MACRO - LOCAL - ENDM Directives

The MACRO - LOCAL - ENDM directives define macroinstructions. The
macroinstruction is a block of instructions which usually makes an operational unit
(e.g. a delay generator) or a part which is often used in the program. Macro begins
with the definition, where a macro name and arguments are specified. The arguments
are intended for parsing values to instructions of the macro body. Up to 10 arguments
are permitted. Macro can call another macro, but only up to five levels of nesting is

74 DPIC/EPIC - User�s Guide

permitted. The LOCAL directive declares that the specified data elements are to be
considered in local text to the macro. Macro ends with the ENDM directive.

Macro definition:

Syntax1: #MACRO <macro name> {<arguments>}
{#LOCAL <loc.l.>}
<instructions>
#ENDM

Syntax2: <macro name> MACRO {<arguments>}
{LOCAL <loc.l.>}
<instructions>
#ENDM

Example:
; macro my1 with two arguments par_a and par_b which stores a
; constant (represented by the par_a parameter) into the data
; register (represented by the par_b parameter):

#MACRO my1 par_a par_b
Movlw par_a
Movwf par_b,F

#ENDM

Macro call:

Syntax: {<label>} <macro name> {<arguments>}

Then the code:

my1 11h, 10h

will be expanded to:

Mowlw 11h
Movwf 10h,F

The compiler allows automatic using of specified macro library for source text
compilation. In the directory where files of integrated environment reside is the
STDPIC.MCR file with built-in basic macroinstructions to maintain compatibility with
other products. This file is read before the compilation and then all macros included in
it are defined during compilation and available for a user. User can add his own macros
there, but it is recommended to create another macro file and include it by the INCLUDE
directive into the source text.

Compiler of the Assembler Language - Language syntax 75

4.6.13 ORG Directive

The ORG directive sets current address of the program memory. Then, next
commands will be compiled from the specified memory location. This allows to set
any address of the program memory. In case of the 16C84 processor, it is allowed to
write data directly into the data EEPROM memory which is mapped from address
2100h.

Syntax: {<label>} ORG <value>

Example: ORG 1FFh ; 16C54 reset vector Goto start
ORG 0 start

4.6.14 PRAGMA Directive

The PRAGMA directive is intended to set various parameters of the assembler.
At present only the optional disable of compiler warning generation is implemented.
This directive does not affect warnings if macro libraries is not found. The warning is
always generated in this case.

Syntax: #PRAGMA warn-

4.6.15 SET Directive

The SET directive defines (like the EQU directive) a symbol value. The value can
be specified as a numeric constant or an expression. You can change the assignment of
the value defined by the SET directive as often as you like throughout the program by
another SET or EQU directive.

Syntax: <symbol> SET <value>

Example: const1 SET 20+6*2
const2 SET const1*3 ; pre-defining a value

4.6.16 TABLE Directive

The TABLE directive defines a table of values in the program memory. During
compilation, this directive expands using the RETLW instructions so that the return
codes correspond to the table. The values can be specified as numeric constants, text
constants or expressions.

Syntax1: {<label>} TABLE <values>
Syntax2: #TABLE <values>

76 DPIC/EPIC - User�s Guide

Example: ADDWF 2,1
TABLE 0xB7, 0x83, 0x11, 0x50

The code will be expanded into the following instructions:

ADDWF 2,1
RETLW 0xB7
RETLW 0x83
RETLW 0x11
RETLW 0x50

4.7 Error Messages and Warnings of the Compiler

Can not open input file �<file name>�
Specific file was not found. Make sure that the file exists.

Can not open include file �<file name>�
The INCLUDE directive attempts to insert a file which can not be opened. Make
sure whether the file name (and the path, if there is any) specification is correct
without a typing error and the file really exists.

Can not open output file �<file name>�
Specified file can not be created and saved. Either the disc is full or write-protected.
In case of a computer network, perhaps you have not enough rights to access the
current directory.

Can not close file �<file name>�
The specified file was open but can not be closed. Perhaps severe failure of the
recording medium occurred or there is not space enough to save the file.

Can not compile this line
The compiler does not understand the line of the source text. Check the syntax of
the instruction or directive.

Maximum number of included files or macros exceeded
Maximum number of included files was exceeded. Maybe the file is included into
itself in a recurrent way and it leads to runaway. Check included files in all included
files.

Unmatched parenthesis
A number of left parenthesis does not match a number of right parenthesis in an
expression. Check the syntax of the expression.

Can not evaluate expression �<expression>�
The expression can not be evaluated. Check a syntax of the expression,
mathematical symbols and constants.

Compiler of the Assembler Language - Language syntax 77

Can not add new label �<label>� to symbol table
Multiple definition of the label in a single program. Rename the label. In case of
the label within a macro, you can define this label as local (the LOCAL directive)
or rename it in the macro definition.

Can not add new symbol �<symbol>� to symbol table
Multiple definition of the symbol. Rename the symbol.

Unknown data type
Unknown data type.

Unknown data type or expression
Unknown data type or expression.

Code placed on address �<address>� replaced by another one
Program was overwritten on address �<address>�.

Keyword �const� must be followed by the keyword �byte�
The �CONST� keyword must be followed by the �BYTE� keyword.

Insufficient memory to add symbol �<symbol>� to symbol table
The memory available to symbols is full. That is why the symbol can not be
added to the symbol table. Reduce a number of unused symbols if there are any.

Duplicate definition of symbol �<symbol>�
An attempt to change a value of the symbol.

Illegal bank number
Illegal number of data memory bank is specified.

Address out of data memory
Register address exceeds the data memory of selected processor

Command allowed for 16Cxx family only
This instruction is defined for the 16Cxx family only

Address out of program memory
The address exceeds the program memory.

Bit number should be in range 0-7. Number truncated!
A number of bits must be from 0 to 7. The number is truncated to three lower bits.

File register number must be 0-#. Number truncated!
A register number must be from 0 to X. The number is truncated.

File register number must be 0-47.
Number truncated! A register number must be from 0 to 47. The number is
truncated.

Call is possible to low 256 bytes of page only
In the 16C5x family it is allowed to call only subroutines beginning in the lower
half-page of the program memory.

78 DPIC/EPIC - User�s Guide

Literal value truncated to 8 bits
A constant higher than 256 is truncated to 8 bits.

Unknown data type
Unknown data type.

Can not evaluate address
The compiler can not evaluate an address of a data type. Check whether the
address specification has the initial �@� character.

Missing address
No address is specified for a data type.

Can not evaluate bit number
An illegal bit number is specified for a data type of bit or bit array. Check the
syntax and typing error.

Can not evaluate bank number
An illegal bank number is specified for a data type. Check the syntax and typing
error.

Bad constant syntax, �=� expected
The syntax of CONST BYTE data type definition is illegal. The �=� character
followed by a value is expected.

Illegal hexadecimal number
The syntax of a hexadecimal number is illegal. The number must begin with a
digit, not a character. For example, the expression FFh is illegal, the right one is
0FFh.

�]� expected
The right square bracket to close an index of an array is missing.

Syntax error
The syntax of a command or directive is illegal.

Bad number of real macro parameters. Check macro definition
A number of parameters parsing to a macro does not match the number of
parameters specified in the macro definition.

Directive �<directive>� is not supported
The specific directive is not implemented in the compiler.

Unimplemented register
The specific register number is out of the range of the data RAM.

Label is not allowed here
It is not permitted to place a label in this line.

Missing symbol name
A symbol name is missing.

Compiler of the Assembler Language - Language syntax 79

Can not open macro file
The macro definition file can not be opened. Does it really exist?

Can not close macro file
The macro definition file can not be closed.

Duplicate macro definition �<macro>�
The specific macro has already been defined. Rename the macro.

Number of macro parameters exceeds limit
A macro can only have up to 10 parameters. Number of specific parameters
exceeds this limit.

Missing #endm directive
A macro definition is not terminated.

Missing macro name
A macro name is not specified in the macro definition.

Number of macro local labels exceeds limit
The limit number of local labels in a macro (up to 10) is exceeded.

Number of macros exceeds limit
Number of macros exceeds the specific limit.

Missing operand
An operand of an instruction or directive is missing.

Invalid TRIS argument
An operand of the TRIS instruction is illegal.

Jump to different page of program memory
Jump to an address out of the current page of the program memory.

This is a *Demo* version
The demo version of the compiler is installed. The restriction is in the maximal
number of lines to be compiled.

Too many errors & warnings
There are too many errors in the program source text.

Unknown error
An unknown error of the compiler.

Notes:

	Table of Contents
	 1. General Information
	2. EPIC16A Emulator - HW Description
	2.1 Front Panel
	2.1.1 Emulation Connector
	2.1.2 Probe Connector
	2.1.3 Color Identification of Probes
	2.2 Rear Panel
	2.2.1 PC to EPIC16A Connection
	2.2.2 Power Supply Connector
	3. Integrated Development Environment
	3.1 Screen Layout
	3.1.1 Program Elements of an Integrated Environment
	3.1.2 Menu
	3.1.3 Watch Window
	3.1.3.1 Moving a Window Around the Screen
	3.1.3.2 Moving Through a Text in a Window
	3.1.4 Dialog Box
	3.1.5 Scroll Bar
	3.1.6 Buttons
	3.1.7 Line Editors
	3.1.8 List Boxes
	3.1.9 Subsidiary Program Elements
	 3.2 Main Menu
	3.2.1 Menu º
	3.2.2 File
	3.2.3 Window
	3.2.4 Edit
	3.2.5 Views
	3.2.6 Run
	3.2.7 Debug
	3.2.8 Option
	3.3 Source Text, Project and Object
	3.3.1 Arrangement of Directories
	3.3.2 Source Text and Project
	3.3.3 Object File
	3.3.4 Project
	3.4 Source Text Editor
	3.4.1 Source Text Editing
	3.4.2 Additional Editor Utilities
	3.5 Program / Data Memory Editor
	3.6 Disassembler
	3.7 Trace buffer
	3.7.1 Trace Memory Arrangement
	3.7.2 Setting and Selections
	3.8 Watch (displaying of user-defined variables)
	3.8.1 Formatting and Editing a Value
	3.9 Displaying and Editing the Stack
	3.9.1 Stack value editor
	3.9.2 Stack Pointer Editor
	3.10 Displaying and editing of events
	3.10.1 Displaying of Events
	3.10.2 Editing of Events
	3.11 Global Events
	3.12 Emulator Setting
	3.13 Chip Options
	3.14 Setting of the Compiler Parameters
	3.15 Setting of the Environment Parameters
	3.16 Setting of the Memory Listing Parameters
	3.16.1 Data selector
	3.16.2 Editor for the Setting of the Listing
	3.17 Setting of the Trace Buffer Listing
	3.18 Coloring the Environment
	3.19 Accessory Elements on the Screen
	3.19.1 Status
	3.19.2 Program Manager
	3.19.3 Available Memory Indicator
	3.2 Window for Error Messages of the Compiler
	3.21 ASCII Chart
	3.22 Calculator
	3.23 Videostop
	3.24 Information
	3.25 Error Messages of the IDE
	3.26 Information Messages of the IDE
	4. Compiler of the Assembler Language
	4.1 Program Source Text
	4.2 Constants
	4.2.1 Numeric Constants
	4.2.2 Text Constants
	4.3 Expressions
	4.4 Symbols
	4.4.1 Symbolic Names of Constant
	4.4.2 Data Types
	4.4.3 Labels
	4.5 Instruction Set of the PIC Processors
	4.5.1 Byte-oriented Operations
	4.5.2 Bit-oriented Operations
	4.5.3 Literal Operations
	4.5.4 Control Operations
	4.5.5 PIC16C5x Instruction Set Summary
	4.5.6 PIC16Cxx Instruction Set Summary
	4.6 Compiler Directives
	4.6.1 Directive Overview
	4.6.2 BANK Directive
	4.6.3 BIT Directive
	4.6.4 BYTE Directive
	4.6.5 CONST BYTE Directive
	4.6.6 DB Directive
	4.6.7 DW Directive
	4.6.8 END Directive
	4.6.9 EQU Directive
	4.6.10 IF - ELSE - ENDIF Directives
	4.6.11 INCLUDE Directive
	4.6.12 MACRO - LOCAL - ENDM Directives
	4.6.13 ORG Directive
	4.6.14 PRAGMA Directive
	4.6.15 SET Directive
	4.6.16 TABLE Directive
	4.7 Error Messages and Warnings of the Compiler
	Notes:

