
SIGMA & OMEGA
SIGMAP01 - Reading STF File

Application Note

Address: ASIX s.r.o.
Staropramenna 4
150 00 Prague
Czech Republic

E-Mail: sales@asix.net (sales inquiries, ordering)
support@asix.net (technical support)

WWW: www.asix.net

Tel.: +420-257 312 378

Fax: +420-257 329 116

mailto:sales@asix.net
http://www.asix.net/
mailto:support@asix.net

SIGMAP01 - Reading STF File

1. File composition

The file format is closely linked with each logic analyzer, SIGMA or OMEGA. File used by SIGMA

is SIGMA Test File and file used by OMEGA is OMEGA Test File. Both files are using same three

letter extension, .stf.

Page 2 of 14

SIGMAP01 - Reading STF File

2. SIGMA Test File

The file is divided into three parts, each separated by NULL character (last byte of first and second

part is 0x00). First and second parts are 8-bit text only, encoding does not matter, third part contains

binary data, so it can contain ASCII control characters including NULL.

2.1 First part: magic

This part is fixed length, containing 16 bytes, 15 characters and NULL. It contains string

„Sigma Test File“ (the white spaces are 0x20) terminated by NULL character.

If further (incompatible) file format version would be needed to introduce, this magic will be

changed to indicate such incompatibility.

2.2 Second part: settings

This part is variable length and contains only text characters. It is terminated by NULL character.

Each line is separated by CR-LF characters (bytes 0x0D 0x0A).

The line is in format Something=Value. Something is identifier and can contain characters A-Z,

a-z, numbers 0-9, dots „.“ and underscore „_“, but it cannot start with dot „.“. Value is value of

that identifier. It can represent string, integer number, … Value can be any combination of

characters containing semicolons, equal signs, ... except quotes, which are not allowed. Special

formatting inside Value may apply.

The Values to be written into the file are withdrawen from all components in the system which are

registered to be so, containing plugins. This means that number and types of Values stored in the file

depends on intalled plugins in the system. Unknown Values should be quietly ignored by the reader.

Next table summaries fundamental Values which are found in every test file.

Page 3 of 14

SIGMAP01 - Reading STF File

Value Meaning Notes Example

DateTime Creation time of file,
number of seconds
since 1.1.1970

DateTime=1165156868

TestFirstTS First valid TS in test.
Never smaller than 1.

For meaning of TS,
see third part of file.
All TS values can
range to more than
237.

TestFirstTS=8018015

TestLengthTS Last valid TS in test.
Length of the test in TS
is LestLengthTS-
TestFirstTS+1.

TestLengthTS=14740456

TestTriggerTS TS where is trigger.
If zero, trigger did not
occur.

TestTriggerTS=8926421

TestCLKTime Sample rate in PU.
If indeterministic,
value of 15016 is here.

15015 PU=1 ns TestCLKTime=300300

Sigma.ClockSource Several options
separated by
semicolons

Fall=0;Rise=0;...

ClockScheme 0 for 50 MHz and less
1 for 100 MHz
2 for 200 MHz
3 for Asynchronous
mode
4 for Synchronous
mode

ClockScheme=0

Period Used only when
ClockScheme=0
Clock
period=Period*20 ns

Maximum 256 Period=1

Pin Used in Asynchronous
and Synchronous mode
Input for clock source.
Pin=0 is Input1.

In synchronous
mode, only Pin=0
and 8 are supported
by SIGMA.

Pin=0

Fall Used in Asynchronous
and Synchronous mode
Fall=1 clocks from
falling edge.

In synchnous mode,
Fall=1 and Rise=1
cannot be set
simultaneously.

Fall=0

Rise Used in Asynchronous
and Synchronous mode

Rise=0

Page 4 of 14

SIGMAP01 - Reading STF File

Rise=1 clocks from
rising edge.

Sigma.SigmaInputs Input names separated
by semicolons

Unallowed
characters are
escaped using %
sign.
See note below
table.

SCLK;MISO;MOSI;;;;;...

Sigma.Trigger Several options
separated by
semicolons

Triggering options
are documented in
separate file,
SIGMAP04 –
Trigger Options.

Traces.Traces Each trace separated by
semicolon

Trace1;Trace2;...

One trace
Each subopntion
separated by colon

Caption=SCLK:Radix=16
:Digits=2:...

Caption Caption visible in GUI Caption=SCLK

Radix

Digits

Separator

Number format when configured as Bus.
Separator contains number of grouped
digits. (typically 2 for Radix=16, 3 for
Radix=10 and 4 for Radix=2)

Radix=16

Digits=2

Separator=0

Type Trace type Input consists of one Input.
Trace type Bus consists of many Inputs.
Trace type Plugin is trace imported from
plugin.
Older versions of SIGMA software used also
types Analog and Digital. These types are
identical to Input type.

Type=Input

Input0

Input1
...

InputIDs which
generates Trace. Bus
traces are generated by
more than one Input,
other types are
generated by just one
Input.

For meaning of
InputIDs, see notes
below.

Input0=0

Input1=...

DataClass Data storage method for OMEGA Test File.
TOmegaChainChunkedData is the legacy
format (see 3.4.2).
TOmegaStreamedData is streamable format
(see 3.4.1).

DataClass=
TOmegaStreamedData

Page 5 of 14

SIGMAP01 - Reading STF File

TS stands for TimeStamp. TimeStamp increments by one each time SIGMA can produce one
sample, which is always 16 bits.

PU stands for PicoUnit. One ns is 15015 PicoUnits.

Test length in seconds is TestCLKTime*(TestLengthTS-TestFirstTS+1).

In synchronous mode, TestCLKTime is not known, value of TestCLKTime is 15016, test length in
seconds is unknown and formula above has no meaning.

In asynchronous mode, TestCLKTime is valid, equal to 300300 (SIGMA is sampling at 50 MHz).

In 100 MHz and 200 MHz sampling mode TS increments every 20 ns, TestCLKTime is 300300.
SIGMA makes „one sample“ in 20 ns by combining 4 or 8 inputs into 16 bits.

Maximum clock rate is TestCLKTime = 76876800 PU, maximum TS is ~237, so maximum
TestCLKTime*TS is about 1.1*1019, ~263.2. Limit 263 PU is more than 170 hours.

Where applicable, unallowed characters are escaped by % sign followed by two hexadecimal digits.

InputID is identifier of Input, either of SIGMA or plugin. Plugin Traces have separate ID space,
Plugin Input 0x10000 and Plugin Trace 0x10000 may not be the same.

InputID Meaning

0x0000 - 0x00FF SIGMA analyzer Inputs

0xFFF8 SIGMA analyzer's virtual rising edge sampling clock

0xFFF9 SIGMA analyzer's virtual falling edge sampling clock

0x00010000 - 0x7FFFFFFF Plugin Input. Upper word is identifier of plugin (hash
generated from plugin's file name), lower word is
plugin's own identifier.

Page 6 of 14

SIGMAP01 - Reading STF File

2.3 Third part: binary data

Binary data are organized in series of records. Each record holds several chunks. One chunk holds

64 clusters. One cluster contains info on one TimeStamp and seven consecutive samples. To

improve compression techniques used in the file, TimeStamps and samples from all clusters in one

chunk are rearranged, so TimeStamps are consecutive and than samples are consecutive.

Multibyte integer values are stored in little endian format.

In SIGMA hardware (but not in STF file!) cluster size is 16 bytes and chunk size is 1024 bytes.

record record
compression / decompression

rearrange
chunk chunk

cluster cluster cluster cluster
TS smp TS smp TS smp TS smp

2.3.1 Record structure

Meaning Offset [bytes] Length [bytes] Notes

payload length 0 4 little endian; in bytes; max 1M

CRC32 of payload 4 4 little endian, same alg. as ethernet

data payload 8 payload length compressed LZO1X

next record 8+payload length

Last record of file is indicated by payload length = 0xFFFFFFFF and CRC32 = 0x00000000

(correct checksum for zero length data). Every STF file ends with bytes 0xFF 0xFF 0xFF 0xFF

0x00 0x00 0x00 0x00. This does not mean that this sequence cannot be found in the file itself.

For purpose of error checking, payload length must not be greater than 1 Mbyte (1048576).

SIGMA software itself do not create record larger than 128 kbyte.

Page 7 of 14

SIGMAP01 - Reading STF File

Structure names used in file are in next table:

Structure name Size after
decompression

Notes

largest
record data payload num_chunks·144

0
num_chunks x chunk = record

↓ chunk 1440 64x cluster = chunk

↓ cluster 22 1x TimeStamp & 1x samples = cluster

↓ samples 14 7x sample = samples

smallest TimeStamp 8

sample 2

Data payload is compressed using miniLZO library, algorithm LZO1X. The library can be

downloaded at address http://www.oberhumer.com/opensource/lzo/. Data payload of

one record is compressed/decompressed at once.

When decompressed, one cluster occupies 1440 bytes. Than,

number_of_chunks_in_record = record_length / 1440.

Page 8 of 14

http://www.oberhumer.com/opensource/lzo/

SIGMAP01 - Reading STF File

2.3.2 Record structure data payload

Decompressed data payload holds rearranged chunk and cluster data as shown in next table,

number_of_chunks_in_record as n.

Meaning Offset [bytes] Length
[bytes]

Notes

Chunk #1 info 0 32

... ...

Chunk #n info (n-1)·32 32

chunk infos
total size = chunk_count·32

Chunk #1 Cluster #1 TimeStamp n·32 8

... ...

Chunk #1 Cluster #64 TimeStamp n·32 + 63·8 8

Chunk #2 Cluster #1 TimeStamp n·32 + 1·64·8 8

... ...

Chunk #n Cluster #64 TimeStamp n·32 + (n-1)·64·8 +
63·8

8

chunk.cluster TimeStamps
total size = chunk_count·64·8

Chunk #1 Cluster #1 Samples n·32 + n·64·8 14

...

Chunk #n Cluster #64 Samples n·32 + n·64·8 +
(n-1)·64·14 + 63·14

14

chunk.cluster Samples
total size = chunk_count·64·14

structure length n·1440

2.3.3 Chunk info structure

Chunk info holds several useful information about clusters inside.

Meaning Offset
[bytes]

Length
[bytes]

Notes

Min 0 0 minimum vector of all samples in chunk

Max 2 2 maximum vector of all samples in chunk

Chunk ID 4 4 reserved, can be zero, used only in communication with
SIGMA hardware

FirstTS 8 8 TimeStamp of first cluster in chunk

LastTS 16 8 TimeStamp of last cluster in chunk

ChunkLength 24 8 next_chunk_FirstTS – current_chunk_FirstTS

Page 9 of 14

SIGMAP01 - Reading STF File

2.3.4 Cluster structure

Cluster is TimeStamp, a 64 bit integer value of TimeStamp of first sample and 7 samples, each

16 bits. One cluster is 22 bytes long.

Each sample is 16 bits. When sampling 8 inputs at 100 MHz, one sample is produced per 20 ns by

sampling 8 inputs two times. When sampling 4 inputs at 200 MHz, one sample is produces per

20 ns by sampling 4 inputs four times.

TimeStamp increases by one per one 16 bit sample. Thus, when sampling at 100 MHz and

200 MHz, TimeStamp increases by one per 20 ns.

2.3.5 Sample encoding

For 16 (or 15) inputs modes, every pin is mapped to one bit of the sample (for 15 inputs with one

pin used as clock for synchronous clock mode, the corresponding bit is undefined).

For the 4 inputs / 200 MHz mode and for the 8 inputs / 100 MHz mode are pins mapped into 16 bit

sample according to table.

Sample bit number 8 inputs / 100 MHz mode 4 inputs / 200 MHz mode

0 Input 1 in time +0 ns Input 1 in time +0 ns

1 Input 1 in time +10 ns Input 1 in time +5 ns

2 Input 2 in time +0 ns Input 1 in time +10 ns

3 Input 2 in time +10 ns Input 1 in time +15 ns

4 Input 3 in time +0 ns Input 2 in time +0 ns

5 Input 3 in time +10 ns Input 2 in time +5 ns

6 Input 4 in time +0 ns Input 2 in time +10 ns

7 Input 4 in time +10 ns Input 2 in time +15 ns

8 Input 5 in time +0 ns Input 3 in time +0 ns

9 Input 5 in time +10 ns Input 3 in time +5 ns

10 Input 6 in time +0 ns Input 3 in time +10 ns

11 Input 6 in time +10 ns Input 3 in time +15 ns

12 Input 7 in time +0 ns Input 4 in time +0 ns

13 Input 7 in time +10 ns Input 4 in time +5 ns

14 Input 8 in time +0 ns Input 4 in time +10 ns

15 Input 8 in time +10 ns Input 4 in time +15 ns

Page 10 of 14

SIGMAP01 - Reading STF File

3. OMEGA Test File

Because of several reasons including:

• Allow users more simple method to read test file

• Computers are now much faster to allow better comression than LZO

• OMEGA stores compared to SIGMA huge amount of data, better, yet still fast, compression

was required; therefore instead of LZO algorithm, DEFLATE algorithm is used.

3.1 File format

OMEGA Test File can be read just like it was normal .zip file. Just rename it to .zip extension (or

pass it directly without renaming) and decompress it by some unzip utility. A .zip file can have

arbitrary number of bytes on its beginning and up to 64kB bytes on its end. This feature is used by

SIGMA/OMEGA software to detect the file as OMEGA Test File.

3.2 Bytes before the first zip file header

There are exactly 16 bytes of data before first „PK“ zip header. Very similar to SIGMA Test File,

these bytes are zero terminated ASCII „Omega Test File“.

3.3 Bytes after the zip file

There are exactly 48 bytes after the end of the zip file. First 32 bytes are fingerprint used for

licensing purposes. Last 16 bytes are again zero terminated ASCII „OMEGA Test File“.

3.4 Files inside the zip file

There are several files inside the zip file. Test should always include at least one Settings file

(without any extension). Other (data) files depends on actual file format and measurement method.

3.4.1 Streamable data file format

Streamable data file format is used for Real-Time mode, but in the future it can be used for saving

acquired data from other modes.

3.4.1.1 Settings file (Optional)

The file Settings contains settings in text form in exactly the same format as SIGMA Test File.

The file is not terminated by null character, but simply with newline (not required during file

Page 11 of 14

SIGMAP01 - Reading STF File

loading). If the file is missing in the archive, it is treated like it would be empty1.

3.4.1.2 Omega.Data file (Required)

File Omega.Data contains all acquired data in sequence. It can be generated and treated like a

stream, even during continuous Real-Time acquisition.

The file is sequence of samples, each 6 bytes long.

Length
(bytes)

Offset
(bytes)

Format Meaning

2 0 uint16 Time from previous sample, in timestamp (=10 ns) units.

4 2 uint32 Lower 16 bits First sample, at time +0 ns.

Upper 16 bits Second sample, at time +5 ns.
All values are stored as little endian. Time from previous sample of the first sample in the stream

should be ignored. Except for the first sample, it should not be zero. For consecutive samples, it

should be one.

3.4.1.3 Omega.Triggers (Optional)

File contains list of int64 (little endian) values of positions of all triggers in the acquisition. If the

file is zero length or is missing, there is no trigger in the acquisition.

3.4.1.4 Omega.Overflows (Optional)

File contains list of records of two int64 (little endian) values. Each record contains first and last

timestamp of regions where was overflow of FIFO memory of the logic analyzer during acquisition.

If the file is missing or is zero length, there is no overflow event in the acquisition.

3.4.2 Legacy file format

Legacy file format is used for all modes except Real-Time mode, but this may change in the future.

There are three files for each OMEGA in daisy chain. If only one OMEGA was used to acquire the

test, only one set of files is included. The files are named Omegan.Data, Omegan.Index and

Omegan.Offsets, numbered from zero.

3.4.2.1 Settings file

The file Settings contains settings in text form in exactly the same format as SIGMA Test File.

The file is not terminated by null character, but simply with newline (not required during file

loading).

1 The software will issue a warning.

Page 12 of 14

SIGMAP01 - Reading STF File

3.4.2.2 .Index file

The .Index file contains index of chunks. Each chunk represents one row in OMEGA memory

ruding test. Maximum number of chunks is 215. The .Index file contains five 32 bit integers per

chunk, therefore its byte size must be always divisible by 20. The integers are stored in little endian

order.

First integer Lower 16 bits contains „min“ vector

Upper 16 bits contains „max“ vector

Second integer Chunk length in timestamps Difference between timestamps of first
sample in this chunk and the next chunk

Third integer Lower 32 bits Timestamp of first
sample in this chunkFourth integer Upper 32 bits

Fifth integer Data length (number of nodes)
Sum of all data length in all chunks must match length of .Data and .Offsets files (in 32 bit

integers).

Each node contains one timestamp and two 16bit or four 8bit samples depending on measurement

mode (200 MHz / 400 MHz).

3.4.2.3 .Data and .Offsets files

Each file contains one 32 bit integer per node for all chunks. Nodes of all chunks are stored in a

row.

One node contains 32 bits, that is two or four samples (depending on 8 or 16 inputs). Offsets

contains difference from previous node. First value in .Offsets file of each chunk does not

contain difference to anywhere (timestamp of this node is exactly the timestamp of first node stored

in .Index file) and must be zero.

The .Data contains sample value in this node. Lower bits contains previous samples, higher bits

contains consecutive samples.

3.5 Requirements for OMEGA Test File

Logic analyzer software will read any zip file with any file extension (if you will force it to do so).

The detection is based on presence of „Settings“ file (case insenzitive). Strings „OMEGA Test

File“ before and after the zip file structure are not required, but without them software will show a

warning message.

Page 13 of 14

SIGMAP01 - Reading STF File

4. Document revision history

Version When What

1.00 23.7.2008 First official release

2.00 13.10.2011 Added a new format for OMEGA

2.01 15.12.2012 Typo corrections

2.02 19.3.2013 Corrections in paragraph 2.3.3

2.03 29.3.2013 Clarification of SIGMA sample encoding

2.04 15.12.2016 Add a new streamable format for OMEGA

Page 14 of 14

	1. File composition
	2. SIGMA Test File
	2.1 First part: magic
	2.2 Second part: settings
	2.3 Third part: binary data
	2.3.1 Record structure
	2.3.2 Record structure data payload
	2.3.3 Chunk info structure
	2.3.4 Cluster structure
	2.3.5 Sample encoding

	3. OMEGA Test File
	3.1 File format
	3.2 Bytes before the first zip file header
	3.3 Bytes after the zip file
	3.4 Files inside the zip file
	3.4.1 Streamable data file format
	3.4.1.1 Settings file (Optional)
	3.4.1.2 Omega.Data file (Required)
	3.4.1.3 Omega.Triggers (Optional)
	3.4.1.4 Omega.Overflows (Optional)

	3.4.2 Legacy file format
	3.4.2.1 Settings file
	3.4.2.2 .Index file
	3.4.2.3 .Data and .Offsets files

	3.5 Requirements for OMEGA Test File

	4. Document revision history

